© 0o N O a b~ WO N -

_ A A A A A
oo a0 A WO N -~ O

- A
© o0 N

P T
A e e W
WY |

L) A oF .
ol LE" o [W Busin
pIAG Wy A usiness

4
/
_|
:

UN/CEFACT
XML Naming and Design Rules

Version 3.0

1st Public Review
7 August 2008

XML Naming and Design Rules V3.0 1st Public Review

N) United Nations Centre for Trade Facilitation and Electronic
[WEF. & JWW)LY

Page 1 of 144

20

21
22
23
24
25
26
27
28

29

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Abstract

This XML Naming and Design Rules specification defines an architecture and set of
rules necessary to define, describe and use XML to consistently express business
information exchanges. It is based on the World Wide Web consortium suite of XML
specifications and the UN/CEFACT Core Components Technical Specification. This
specification will be used by UN/CEFACT to define XML Schema and Schema
documents which will be published and UN/CEFACT standards. It will also be used
by other Standards Development Organizations who are interested in maximizing
inter- and intra-industry interoperability.

XML Naming and Design Rules V3.0 1st Public Review Page 2 of 144

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Table of Contents

ADSTIACT. . ..o e a e eaeaae 2
Table Of CONENEScoiiiiiiiieeee et 3
1 Status of This DOCUMENTviiiiiii e 7
2 XML Naming and Design Rules Project Team Participants 8
21 Acknowledgements ..o 8
2.2 DISCIAIMET ... e 9
2.3 Contact Information.............cooorriiiic 9
3 INIrOAUCTION ..o 10
3.1 Summary of Contents of Documentccooiiiiiiiiiiiiis 10
3.1.1 N\ €= 11 0] o PRSPPI 11
3.2 AUAIENCE ...t e e e e e e e eeeaeees 11
4 ODJECHIVES ..o 12
4.1 Goals of the Technical Specificationccccoeevviiiiiiiiinnn. 12
4.2 ReqUIremMeNntS........coo oo 12
421 CoNfOrMANCE ... 12
4.3 Caveats and ASSUMPLIONScooeviiiiiiiiiiiiee e 13
4.3.1 Guiding PrinCIPIESoieieeiieeeeeee e 13
5 XML Schema ArchiteCture............cooviriiiiiiiie e 15
51 Overall XML Schema Structure..........ccccoeeeeeieiiiiiiiiice 15
52 Relationship to CCTS.....oooiiii e 16
5.2.1 O O PR 17
522 The XML Schema Components.............ccoovveeviiiiiiiiiieeeeeeeeeeees 17
523 Context Categoriesuuiuiiiiiiiiiiiiiiieie e 19
53 Naming and Modelling Constraintsccccceeiiiiiieiiiiiniinnnn, 20
54 Reusability Scheme ... 23
55 Message Assembly Considerationsccccccceeeeeiiiiiiiiiiinnnnn. 25
5.5.1 Implementation of Aggregations — Nesting or Referencing....... 25
55.2 Other Usages of XML Referencingccccoovviveviiiiicceeneeennn. 25
55.3 Schema Validation Requirements for XML References............ 26
554 Message Assembly Definition Requirements............................ 26
5.6 Namespace SCheme............uuuiiiiiiiiiiiie e 27
5.6.1 Namespace Uniform Resource Identifierscc.....ccccooeeiii 28

XML Naming and Design Rules V3.0 1st Public Review Page 3 of 144

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

5.6.2 NamMeSPACE TOKENScceiiiiiiie e 30
5.7 XML Schema FileScooooiiiiieeeeeeceee e 30
5.7.1 Root XML Schema Files ..o 32
5.7.2 Business Data Type XML Schema Files............cccccuvviiiiiieinennn. 33
5.7.3 Business Information Entity XML Schema Files 34
574 Code List XML Scehema Files.........ccccoviiiiiiiiiiiiiiiiiccieeeeeee, 34
5.7.5 Other Standard Bodies BIE XML Schema Files........................ 36
5.8 Schema Locationccooooiiiiiiiiiiic e 36
59 Versioning SChEMEooviiiiiiiiici e, 37
5.9.1 MaJOr VEISIONS ...ttt 37
59.2 MiINOr VEISIONS ..o 38
6 Application of Contextcceeeiiiiiiiiii 40
7 General XML Schema Definition Language Conventions 41
71 Overall XML Schema Structure and Rules..............cccccocnnnnnene 41
711 XML Schema Declarationcccooeeeeeeiiiiieiiiiiicieee e, 41
71.2 XML Schema File Identification and Copyright Information 41
7.1.3 Schema Declaration ... 41
714 CCTS Artifact Metadata...........eueeeiieiiiiiiiiiii e 42
7.1.5 Constraints on Schema Constructionccccevvviiiiiciiinennenn. 43
7.2 Attribute and Element Declarations...............cuuuiiiiiiiiniiiiinnnn, 43
7.21 ARFDULES ... 43
7.2.2 ElEmMENtS ... 44
7.3 Type Definitionscccooiiiiiii e 45
7.3.1 Simple Type Definitionsoovveiiiiiiiii e 45
7.3.2 Complex Type Definitionscovvviiiiiiiiiiiee e 45
7.4 Use of Extension and Restrictionooiiiiiiiiiineeees 46
7.4.1 EXEENSION ... 46
7.4.2 RESICHON ... 47
7.5 ANNOTALION ... e 47
7.5.1 Documentation...........ooeeeiiiiiiiii e 47
7.5.2 Application Information (AppINfo).......ccoovriiiiiiiiiiiiiiie e, 52
8 Application of Context in Namespacecccceeeeeeeeeiiiiiiiiiiiiccceee e 57
8.1 Root XML Schema Filescoiviiiiiiiiiiiiciie e, 58
8.1.1 XML Schema Structure..........ccccciiiiiiiiiiiieeeeeee e 59
8.1.2 0T 18 o [URRRRPPPRIN 59

XML Naming and Design Rules V3.0 1st Public Review Page 4 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

9 8.1.3 Root Element Declarationccooeevieeiiiiiiiiiiiiieee e 60
100 8.1.4 Type Definitions ..o 61
101 8.15 Declaration of the Referencing Constraintsccceceeeee. 61
102 8.1.6 ANNOIALIONS ... 63
103 8.2 Business Information Entities XML Schema Files..................... 64
104 8.2.1 Schema StruCtUreccooo e 64
105 8.2.2 INCIUAES .. 65
106 8.2.3 Type Definitions ... 65
107 8.24 Element Declarations and References............cccccuveveiiiveveinnnn... 68
108 8.25 ANNOTALION.....eiiii e 70
109 8.3 Business Data Type XML Schema Filesccccuvviiiiiieeeennn. 75
110 8.3.1 Use of Business Data Type XML Schema Files 75
111 8.3.2 XML Schema Structure.............eeiiieeeieeiiieeeecee e 75
112 8.3.3 Imports and INCIUAES..........oovuiiii e 76
113 8.34 Type Definitions ..o 76
114 8.3.5 Attribute and Element Declarationsccccceiiiiiiiniiiiinnnn, 79
115 8.3.6 ANNOLALIONS ... 79
116 8.4 Code List XML Schema Filesccovvviiiiiiiiiiiiiiice 82
117 8.4.1 Shared Code List XML Schema Componentscccccc....... 82
118 84.2 Common Code List XML Schema Components 84
119 843 Restricted Code List XML Schema Components...................... 91
120 9 XML Instance DOCUMENLScoeeiiiiiiiiiiee e e e 93
121 9.1 Character ENcodingccooooiiiiiiiiiiiccice e 93
122 9.2 Xsi:schemalocation..........coovviiiiiii e 93
123 9.3 Empty Content ..o 93
124 9.4 XS Y P i ——— 94
125 10 Use Cases for Common Code ListS..........ccoooviiiiiiiiiiiiiiieieeeeeeee 95
126 10.1 Referencing a Common Code List in Business Data Types......96
127 10.1.1 Referencing any code list using BDT CodeTypecc...... 97
128 10.1.2 Referencing a Common Code Listin a BDTcccccoevieiiiiennnees 98
129 10.2 Choosing or Combining Values from Several Code Lists.......... 99
130 10.2.1 CROICE. ..o 99
131 10.2.2 (8] To) o 1 PPSPPPR 100
132 10.3 Restricting the Allowed Code Valuesccccceeeeeeeeiiiiiinnnnnn, 101
133 Appendix A. Related DOCUMENTSouviiiiiiiiiiiceieceeeee e 102

XML Naming and Design Rules V3.0 1st Public Review Page 5 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

134 Appendix B. Overall Structureueiiiiiiiiiiiiccie e, 103
135 B.1 XML DeClarationccooooioeeiiiiiiiiiccieiee e e e e e ee e 103
136 B.2 Schema Module Identification and Copyright Information..................... 103
137 B.3 Schema Start-Tag........ccccuuuuiiiiiiiiiiieeee e 104
138 B4 INCIUAES. ... anenes 105
139 B.O IMPOMS.. et a e e e e eeeaaenes 105
140 B.O EIemMENtS ... 106
141 B.7 ROOt €IEMENL ..o e 107
142 B.8 Type Definitionscoiiiiiiiieeee e 107
143 Appendix C. ATG Approved Acronyms and Abbreviations........................... 112
144 Appendix D. Core Component XML Schema Fileccccooeiiiiiiiiiiiiiiieennnnns 113
145 Appendix E. Business Data Type XML Schema File............ccc.cccooiiiirinnnnnnn. 114
146 Appendix F. Annotation Templatescccoovviiiiiiiiiiiiiccici e 115
147 Appendix G. Mapping of CCTS Representation Terms to CCT and BDT Data Types
USSR 116
149 Appendix H. Naming and Design Rules List..............ccooooiiiiiiiiiiiiiii 118
150 ApPEeNdiX |. GIOSSAIYuceiiiieieeeeeeeeee et e e e e e eeaaaaaanas 137
151 DISCIAIMET oo e e e e e e e e s e e e e e e e e e e eeeeeennnnes 143
152 Copyright Statement..........ccoooiiiiiiii e 144
153

XML Naming and Design Rules V3.0 1st Public Review Page 6 of 144

154

155
156
157
158

159
160

161
162

163
164

165
166

167
168

169
170

171

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

1 Status of This Document

This UN/CEFACT technical specification is being developed in accordance with the
UN/CEFACT/TRADE/R.650/Rev.4/Add.1/Rev.1 Open Development Process (ODP)
for technical specifications. The UN/CEFACT Applied Technology Group (ATG) has
approved it for broad public review.

This technical specification contains information to guide in interpretation or
implementation.

Specification formatting is based on the Internet Society’s Standard RFC format.
Distribution of this document is unlimited.

This version: UN/CEFACT XML Naming and Design Rules, Version 3.0 1st Public
Review of 7 April 2008

Previous version: UN/CEFACT XML Naming and Design Rules, Version 3.0 ODP 5
Draft ATG Review 2 of 23 July 2008

This document may also be available in these non-normative formats: XML, XHTML
with visible change markup. See also translations.

Copyright © 2008 UN/CEFACT, All Rights Reserved. UN liability, trademark and
document use rules apply.

XML Naming and Design Rules V3.0 1st Public Review Page 7 of 144

172
173

174
175

176

177

178

179

180

181
182
183

184
185

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

2 XML Naming and Design Rules Project Team
Participants

We would like to recognize the following for their significant participation in the
development of this technical specification.

ATG2 Chair
Jostein Framyr EdiSys Consulting AS

Project Team Leader

Mark Crawford SAP Labs LLC (U.S))
Lead Editor
Michael Rowell Oracle Corporation / OAGi

Contributors

Chuck Allen HR-XML
Dipan Anarkat GS1

Serge Cayron ACORD
Anthony Coates Independent
David Connelly OAGiI

Mavis Cournane Independent
Alain Dechamps CEN
Michael Grimley US Navy
Paul Hojka APACS
Kevin Smith Independent
Gunther Stuhec SAP AP

Jim Wilson KCX/ CIDX

2.1 Acknowledgements

This version OF UN/CEFACT - XML Naming and Design Rule was created to foster
convergence among Standards Development Organizations (SDOs) with close
coordination with these organizations.

e ACORD
e CIDX

XML Naming and Design Rules V3.0 1st Public Review Page 8 of 144

186
187
188
189

190

191
192
193
194

195

196
197
198

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

e GS1

e HR-XML

e OASIS Universal Business Language (UBL) Technical Committee
e Open Application Group (OAGiI)

2.2 Disclaimer

The views and specification expressed in this technical specification are those of the
authors and are not necessarily those of their employers. The authors and their
employers specifically disclaim responsibility for any problems arising from correct or
incorrect implementation or use of this technical specification.

2.3 Contact Information

ATG2 — Jostein Fremyr , EdiSys Consulting AS, Jostein.Fromyr@edisys.no
NDR Project Lead — Mark Crawford, SAL Labs LLC (U.S.), mark.crawford@sap.com
Lead Editor — Michael Rowell, Oracle Corporation, michael.rowell@oracle.com

XML Naming and Design Rules V3.0 1st Public Review Page 9 of 144

199
200

201

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3 Introduction

3.1 Summary of Contents of Document

This specification consists of the following Sections and Appendices.

Abstract Informative
Table of Contents Informative
Section 1: Status Informative
Section 2: Project Team Informative
Section 3: Introduction Informative
Section 4: Objectives Normative

Section 5: General XML Schema Architecture Normative

Section 6: Application of Context Informative
Section 7: General XML Schema Language Conventions Normative

Section 8: Application of Context in Namespace Normative

Section 9: XML Instance Documents Normative

Section 10: Common Use Cases for Code Lists Informative
Appendix A: Related Documents Informative
Appendix B: Overall Structure Normative

Appendix C: ATG Approved Acronyms and Abbreviations Normative

Appendix D: Business Data Type XML Schema File Normative

Appendix E: Annotation Applnfo Templates Informative
Appendix F: Annotation Documentation Templates Informative
ngr_)rendix G: Mapping of CCTS Representation Terms to CCT and Informative
Appendix H: Naming and Design Rules List Normative

Appendix G: Glossary Normative

XML Naming and Design Rules V3.0 1st Public Review

Page 10 of 144

202

203
204
205
206
207
208
209

210
211

212
213
214
215

216
217

218
219
220
221

222

223
224

225
226
227

228
229
230

231
232

233
234
235
236

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3.1.1 Notation

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
specification, are to be interpreted as described in Internet Engineering Task Force
(IETF) Request For Comments (RFC) 2119.1. Wherever xsd: appears in this
specification it refers to a construct taken from one of the W3C XML Schema
recommendations. Wherever ccts: appears it refers to a construct taken from the
UN/CEFACT Core Components Technical Specification.

Example — A representation of a definition or a rule. Examples are informative.

[Note] — Explanatory information. Notes are informative.

[Rn] — Identification of a rule that requires conformance. Rules are normative. In
order to ensure continuity across versions of the specification, rule numbers are
randomly generated. The number of a rule that is deleted will not be re-issued.
Rules that are added will be assigned a previously unused random number.

courier — All words appearing in bolded courier font are values, objects or
keywords.

When defining rules, the following annotations are used:
[1 = optional
< > =variable

| = choice
3.2 Audience

.The audience for this UN/CEFACT - XML Naming and Design Rules Technical
Specification are:

e Members of the UN/CEFACT Applied Technologies Group who are
responsible for development and maintenance of UN/CEFACT XML
Schema

e The wider membership of the other UN/CEFACT Groups who participate
in the process of creating and maintaining UN/CEFACT XML Schema
definitions

e Designers of tools who need to specify the conversion of user input into
XML Schema definitions adhering to the rules defined in this document.

e Designers of XML Schema definitions outside of the UN/CEFACT Forum
community. These include designers from other standards organizations
and companies that have found these rules suitable for their own
organizations.

Key words for use in RFCs to Indicate Requirement Levels - Internet Engineering Task Force, Request For
Comments 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt?number=2119

XML Naming and Design Rules V3.0 1st Public Review Page 11 of 144

237
238

239
240
241
242
243
244
245
246

247

248
249

250

251
252
253
254
255
256

257
258
259

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

4 Objectives
4.1 Goals of the Technical Specification

This technical specification has been developed to provide for XML standards based
expressions of semantic data models representing business information exchanges.
It can be employed wherever business information is being shared in an open
environment using XML Schema to define the structure of business content. It
describes and specifies the rules and guidelines UN/CEFACT will use for developing
XML schema and schema documents based on CCTS conformant artefacts and
information models developed in accordance with the UN/CEFACT CCTS Technical
Specification Version 3.0.

4.2 Requirements

Users of this specification should have an understanding of basic data modelling
concepts, basic business information exchange concepts and basic XML concepts.

4.2.1 Conformance

Designers of XML schema in governments, private sector, and other standards
organizations external to the UN/CEFACT community have found this specification
suitable for adoption. To maximize reuse and interoperability across this wide user
community, the rules in this specification have been categorized to allow these other
organizations to create conformant XML schema while allowing for discretion or
extensibility in areas that have minimal impact on overall interoperability.

Accordingly, applications will be considered to be in full conformance with this
technical specification if they comply with the content of normative sections, rules
and definitions.

Conformance SHALL be determined through adherence to the
content of the normative sections and rules. Furthermore each rule
is categorized to indicate the intended audience for the rule by the
following:

Rule Categorization

ID|Description

[R B998] 1 |Rules which must not be violated by individual organizations

else conformance and interoperability is lost — such as named
types.

2 |Rules which may be tailored for individual organizations while
still conformant to the NDR structure — such as namespace
string contents and namespace tokens.

3 |Rules which may be modified by individual organizations while

XML Naming and Design Rules V3.0 1st Public Review Page 12 of 144

260
261

262

263
264
265
266
267

268
269
270

271
272
273

274

275
276

277

278
279

280
281
282

283
284

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

still conformant to agreed upon data models — such as the use
of global or local element declarations.

Rules that if violated loose conformance with the CEFACT
data/process model — such as xsd: redefine, xsd:any, and
xsd:substitutionGroups.

Rules that relate to extension that are not used by UN/CEFACT
and have specific restrictions on their use by other than
CEFACT organizations.

Rules that relate to extension that are determined by specific
organizations.

Rules that can be modified while not changing instance
validation capability.

Category 1, 4 and 5 rules can not be modified. Category 2, 3, 6, and 7 may be
tailored within the limits identified in the rule and related normative text.

4.3 Caveats and Assumptions

The schema created as a result of employing this specification should be made

publicly available in a universally freely accessible library as schema documents.
UN/CEFACT will maintain their XML schema as published documents in an ebXML
compliant registry and make its contents available to any government, individual or
organization who wishes access.

Although this specification defines schema components as expressions of core
component artefacts, it can also be used by non-CCTS developers for other class
based expressions of logical data models and information exchanges.

This specification does not address transformations via scripts or any other means.
It does not address any other representation of Core Component artefacts. For
example, OWL, Relax NG, XMI and others are outside the scope of this document.

4.3.1 Guiding Principles

The following guiding principles were used as the basis for all design rules contained

in this specification.

Relationship to UMM — UN/CEFACT XML Schema defintion will be based on
UMM metamodel adherent Business Process Models.

Relationship to Information Models — UN/CEFACT XML Schema will be based
on information models developed in accordance with the UN/CEFACT — Core
Components Technical Specification.

XML Schema Creation — UN/CEFACT XML Schema design rules will support
XML Schema creation through handcrafting as well as automatic generation.

XML Naming and Design Rules V3.0 1st Public Review Page 13 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

285 e ebXML Use — UN/CEFACT XML Schema and XML instance documents shall
286 be easily usable within the ebXML framework and compatible with other

287 frameworks to the maximum extent practicable.

288 ¢ Interchange and Application Use — UN/CEFACT XML Schema and XML

289 instance documents are intended for business-to-business and application-to-
290 application use.

291 e Tool Use and Support - The design of UN/CEFACT XML Schema will not
292 make any assumptions about sophisticated tools for creation, management,
293 storage, or presentation being available.

294 e Legibility - UN/CEFACT XML instance documents should be intuitive and

295 reasonably clear in the context for which they are designed.

296 e Schema Features - The design of UN/CEFACT XML Schema should use the
297 most commonly supported features of W3C XML Schema Recommendation.
298 e Technical Specifications — UN/CEFACT XML Naming and Design Rules will
299 be based on Technical Specifications holding the equivalent of W3C

300 recommended status.

301 e XML Schema Specification — UN/CEFACT XML Naming and Design rules will
302 be fully conformant with W3C XML Schema Recommendation.

303 e Interoperability - The number of ways to express the same information in a
304 UN/CEFACT XML Schema and UN/CEFACT XML instance document is to be
305 kept as close to one as possible.

306 e Maintenance — The design of UN/CEFACT XML Schema must facilitate

307 maintenance.

308 e Context Sensitivity - The design of UN/CEFACT XML Schema must ensure
309 that context-sensitive document types are not precluded.

310 ¢ Relationship to Other Namespaces - UN/CEFACT XML design rules will be
311 cautious about making dependencies on other namespaces.

312 e Legacy formats - UN/CEFACT XML Naming and Design Rules are not

313 responsible for sustaining legacy formats.

XML Naming and Design Rules V3.0 1st Public Review Page 14 of 144

314
315
316
317
318
319
320
321
322
323
324

325

326
327
328
329
330

331
332
333

334
335
336

337
338
339

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

5 XML Schema Architecture

This section defines rules related to general XML Schema constructs these include:
e Overall XML Schema Structure
¢ Relationship to CCTS
¢ Naming and Modeling Constraints
e Reusability Scheme
e Message Assembly Considerations
e Namespace Scheme
e XML Schema Files
e Schema Location

e Versioning
5.1 Overall XML Schema Structure

UN/CEFACT has determined that the World Wide Web Consortium (W3C) XML
Schema Recommendation is the schema definition language with the broadest
adoption. Accordingly, all UN/CEFACT XML Schema definitions will be expressed in
XML Schema. All references to XML Schema will be as XML Schema. References to
XML Schema defined by UNCEFACT will be as UN/CEFACT XML Schema.

All XML Schema design rules MUST be based on the W3C XML
[R 8059] Schema Recommendations: XML Schema Part 1: Structures 1
Second Edition and XML Schema 1.1 Part 2: Datatypes.

The W3C is the recognized source for XML specifications. W3C specifications can
hold various status. Only those W3C specifications holding recommendation status
are considered by the W3C to be stable specifications.

All conformant XML instance documents MUST be based on the
[R935C] | W3C suite of technical specifications holding recommendation 1
status.

To maintain consistency in lexical form, all UN/CEFACT XML Schema need to use a
standard structure for all content. This standard structure is contained in Appendix
B.

[R 9224] XML Schema MUST follow the standard structure defined in 1

Appendix B of this document.

The W3C XML Schema specification uses specific terms in defining the various
aspects of a W3C XML Schema. These terms and concepts are used without
change in this NDR specification. Figure 5-1, shows these.

XML Naming and Design Rules V3.0 1st Public Review Page 15 of 144

XML Naming and Design Rules V3.0 1st Public Review

Markup Vocabulary

0.*

1

Al

0.1

-imported namespace

-target namespace

XML Namespace

2008-08-07

1. Association names (A1, A2, ..., AB) are identifiers.
2. Every class except "Physical File" and "etc." is
defined in the W3C XML Schema (or referenced)
specs.

3. A3: Some parts of the W3 specification seem to
suggest that the cardinality should be 1..1 on both
ends and other parts suggest 0..*. Comments on this
point are welcome.

4. Background-color selections are intended solely to
provide contrast to a couple of central classes.

0.1
0..1 0.*
A3
0.*
- Schema ~validates
0.*
0.*
e " a4 Element Declaration
0.* 0.*
Schema Component 5 Attribute Declaration
0.7 Simple Type Definition
A5
0. Complex Type Definition
0.* .
Schema Document 0. Annotation
0.* -included
0. 0. etc.
AB
A6 AA
1
XML Document |-validated by
0.*
0.1
A7
0..1 Eg. An “xsd”
Physical File —— | fileona hard
drive

340

341

342
343

XML Naming and Design Rules V3.0 1st Public Review

5.2 Relationship to CCTS

Figure 5-1 W3C XML Schema terms and concepts.

All UN/CEFACT business information modelling and business process modelling
employ the methodology and model described in UN/CEFACT CCTS.

Page 16 of 144

344

345
346

347
348
349
350
351

352
353
354

355
356

357
358
359
360
361

362

363
364

365
366

367
368

369

370
371
372
373
374
375

376

377
378
379

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

5.21 CCTS

CCTS provides a way to identify, capture and maximize the re-use of business
information to support and enhance information inter-operability.

The foundational concepts of CCTS are Core Components (CC) and Business
Information Entities (BIE). Core Components are building blocks that can be used for
all aspects of data, information modelling and information exchange. Core
Components are used for creating interoperable business process models and
business documents.

Core components are conceptual models that are used to define Business
Information Entities (BIEs). The BIEs are the logical data model object used for
information exchanges. BIEs are created through the application of context that may:

e Be qualified to provide a unique business semantic,
e Specify a restriction from the underlying CC.

Core Components encompass Aggregate Core Components (ACCs) and Basic Core
Components (BCCs), and Association Core Components (ASCCs). Business
Information Entities (BIE) encompasses Aggregate Business Information Entities
(ABIEs), Basic Business Information Entities (BBIEs), and Association Business
Information Entities (ASBIEs).

The CCTS model for BIEs includes

¢ Common information that are expressed in the annotation documentation in
the XML Schema

e Localized information that while expressed in the model is not expressed in
the XML Schema.

e Usage Rules that are expressed in the annotation application information in
the XML Schema.

5.2.2 The XML Schema Components

UN/CEFACT XML Schema design rules are closely coupled with CCTS.
UN/CEFACT XML Schema will be developed from fully conformant Business
Information Entities that are based on fully conformant Core Components. Figure 5-2
shows the relationship between CCTS Core Components (CCs) artefacts, Business
Information Entities (BIEs) artefacts and XML Schema Components. XML Schema
Components as defined in Figure 5-2.

Note:

CCTS specifies DataTypes, CCs and BIEs. The columns in Figure 5-2 indicate the
conceptual CC Model view and the entity BIE Model view and the how these are
translated to XML Schema.

XML Naming and Design Rules V3.0 1st Public Review Page 17 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

(Core DataType (CDTD

| I
| |
| I
| |
A \rBusiness DataType (BDT)]
N |
| I
| I
| |

| I
[Basic Core Component (BCCMBasic Business Information Entity (BBIEMsd:element Local Declaratior}_.u

|
Gggregate Core Component (ACCHAggregate Business Information Entity (ABIE)

/N

ZOY

(Association Core Component (ASCCHAssociation Business Information Entity (ASBIE

)

CCTS CC Artefacts

I
o
| CCTS BIE Artefacts

xsd:element Global Declartior)

xsd:element Local Declaratior} -—

XML Schema
Component

|
|
|
|
|
|
|
|
|
|
|
|

380
381
382
383
384
385
386
387
388
389
390
391

392
393

394
395
396

397

Figure 5-2 Transitions between CCTS Artefacts and XML Schema Components
The boxes in the CCTS columns reflect CCTS artifacts:
e Core Components (CC)

O

O

O

O

Core Data Types (CDT)

Basic Core Components (BCC)
Aggregate Core Components (ACC)
Association Core Components (ASCC)

e Business Information Entities (BIE)
o Business Data Types (BDT)
o Basic Business Information Entities (BBIE)
o Aggregate Business Information Entities (ABIE)
o Association Business Information Entities (ASBIE)

The solid arrows flowing from the CC to the BIE column show the direct mapping of
the artefacts from CC to BIEs as defined by CCTS.

The boxes in the XML Schema Components column reflect the XML Schema
Components used to express the given BIE. The boxes in the XML Schema
Components column show the XML Schema Components being used:

e XML Schema Components

XML Naming and Design Rules V3.0 1st Public Review Page 18 of 144

398
399
400
401

402
403
404
405

406
407
408
409
410
411
412
413

414
415
416
417

418
419
420
421
422

423
424
425
426
427

428
429

430
431
432
433
434

435

436
437
438
439

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

o simpleType

o complexType

o Local element declaration
o Global element declaration

The solid arrow flowing between the BIE column and the XML Schema Component
column show the direct mapping from the BIE to the XML Schema Component used
to represent it. The dotted arrows with the XML Schema Component column indicate
that the given element makes use of type artefact pointed to by the arrow.

Specific ABIEs are identified as the business information payload (Message
Assembly). These business information payload (Message Assembly) like all ABIEs
are represented as a type definition (xsd: complexType) and global element
(xsd:element) declaration in an UN/CEFACT XML Schema. The difference in this
case is that the Message Assembly recognizes this global element declaration and
the type (xsd: complexType) represents the document level ABIE. The global
element is designated as the root element of the UN/CEFACT conformant XML
Instances.

Whether an ASBIE uses a local or global element depends upon the type of
association (AggregationKind=shared or AggregationKind=composition)
specified in the model. An ASBIE will be declared as either a local element or as a
global element.

e |f the ASBIE is a “composition” association (AggregationKind is composition).
The ASBIE is declared as a local element (xsd: element) within the type
(xsd: complexType) representing the associating ABIE. This local element
(xsd:element) makes use of the type (xsd:complexType) of associated
ABIE.

e Ifitis a “shared” association (AggregationKind is shared). The ASBIE is
referenced as a global element (xsd: element) within the type representing
the associating ABIE. The global element (xsd:element) is declared in the
same namespace as the associating ABIE and makes use of the type
(xsd: complexType) of the associated ABIE.

A BBIE is declared as a local element within the xsd: complexType representing
the parent ABIE. The BBIE is based on a (is of type) Business Data Type (BDT).

A BDT is defined as either a xsd: complexType Or xsd:simpleType. From a
modeling perspective BDT’s are based on Core Data Types (CDT). This relationship
is not represented in the corresponding XML Schemas. XML Schema built-in data
types are to be used whenever the facets of the built-in data type are equivalent to
the CCT supplementary components for that data type.

5.2.3 Context Categories
The CCTS identifies a set of context categories that affect the resulting context
specific BIEs that are created from the CCs. This NDR specification captures all of

these context categories through the use annotation application information
(<xsd:annotation> <xsd:appInfo>)element accompanying each element

XML Naming and Design Rules V3.0 1st Public Review Page 19 of 144

440
441

442
443
444
445

446

447
448
449
450
451
452
453
454
455
456
457
458
459
460

461
462
463
464
465
466

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

declaration in UN/CEFACT Schemas. The structure of this information is provided
later in this technical specification.

Additionally, each organization adhering to this specification will choose a context
category value to incorporate into their namespace. This context category should be
the dominant context category for their use. For all UN/CEFACT XML Schema the
context category expressed in the namespace is the Business Process.

5.3 Naming and Modelling Constraints

UN/CEFACT XML Schemas are derived from components created through the
application of CCTS and UN/CEFACT Modelling Methodology (UMM) process
modelling and data analysis. UN/CEFACT XML Schema contain XML Schema
Components that follow the naming and design rules in this specification. These
naming and design rules have taken advantage of the features of the XML Schema
specification. In many cases this results in the truncation of the CCTS Dictionary
Entry Names (DENs). However, the fully conformant CCTS DENSs of the underlying
CCTS artefacts are preserved as part of the annotation documentation
(<xsd:annotation> <xsd:documentation>) element accompanying each
element declaration in UN/CEFACT XML Schemas. The CCTS DEN can be
reconstructed by using XPath expressions. The fully qualified XPath (FQXP) ties the
information to its standardized semantics as described in the underlying CCTS
construct and CCTS DEN, while the XML element or attribute name is a truncation
that reflects the hierarchy inherent in the XML construct.

The FQXP anchors the use of a construct to a particular location in a business
information payload. The dictionary definition identifies any semantic dependencies
that the FQXP has on other elements and attributes within the UN/CEFACT library
that are not otherwise enforced or made explicit in its structural definition. The
dictionary serves as a traditional data dictionary, and also some of the functions of a
traditional implementation guide.

Each element or attribute XML name MUST have one and only

[RAIE2] | e fully qualified XPath (FQXP).

All rules on element naming are constructed so that a part of the fully qualified XPath
will always represent the CCTS dictionary entry name of the corresponding ABIE,
BBIE, ASBIE or BDT.

Example 5-1 shows a FQXP for Address Coordinate LatitudeMeasure and
Organization Location Name.

Example 5-1: Fully Qualified XPath

Address/Coordinate/LatitudeMeasure
Organisation/Location/Name

The official language for UN/CEFACT is English. All official XML constructs as
published by UN/CEFACT will be in English. XML and XML Schema development
work may very well occur in other languages, however official submissions for
inclusion in the UN/CEFACT XML Schema library must be in English. Other

XML Naming and Design Rules V3.0 1st Public Review Page 20 of 144

479
480

481
482
483
484
485

486
487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

language translations of UN/CEFACT published XML and XML Schema
Components are at the discretion of the users.

Element, attribute and type names MUST be composed of words
[R AA92] | in the English language, using the primary English spellings 1
provided in the Oxford English Dictionary.

Following commonly used best practice, LowerCamelCase (LCC) is used for naming
attributes and UpperCamelCase (UCC) is used for naming elements and types.
LowerCamelCase capitalizes the first character of each word except the first word
and compounds the name. UpperCamelCase capitalizes the first character of each
word and compounds the name.

Examples 5-2 through 5-6 show examples of what is allowed and not allowed.
Example 5-2: Attribute

Allowed

<xsd:attribute name="unitCode" .../>

Example 5-3: Element

Allowed

<xsd:element name="LanguageCode" ...>

Example 5-4: Type

Allowed

<xsd:complexType name="DespatchAdviceCodeType">

Example 5-5: Singular and Plural Concept Form

Allowed - Singular:

<xsd:element name="GoodsQuantity" ...>

Not Allowed - Plural:

<xsd:element name="ItemsQuantity" ...>

Example 5-6: Non-Letter Characters

Not Allowed

<xsd:element name="LanguageCode8" ...>

[R 9956] LowerCamelCase (LCC) MUST be used for naming attributes. 1

XML Naming and Design Rules V3.0 1st Public Review Page 21 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

R A781] :JpperCameICase (UCC) MUST be used for naming elements and 1
ypes.
Element, attribute and type names MUST be in singular form

[R 8D9F] :) 1
unless the concept itself is plural.
Element, attribute and type names MUST be drawn from the

[R BFBO] . . 1
following character set: a-z and A-Z.

504 While CCTS allows for the use of periods, spaces and other separators in the
505 dictionary entry name. XML best practice is to not include these in an XML tag
506 name. Additionally, XML 1.0 specifically prohibits the use of certain reserved
507 characters in XML tag names.

508 Examples 5-7 and 5-8 show examples of what is allowed and not allowed.
509 Example 5-7: Spaces in Name

510 Not Allowed

511 <xsd:element name="Customized Language. Code:8" ...>

512 Example 5-8: Acronyms and Abbreviations

513 Allowed — ID is an approved abbreviation

514 <xsd:attribute name="currencyID"

515 Not Allowed — Cd is not an approved abbreviation, if it was an approved abbreviation
516 it must appear in all upper case

51 7 <xsd:simpleType name="temperatureMeasureUnitCdType>

XML element, attribute and type names constructed from
[R AB19] dictionary entry names MUST NOT include periods, spaces, or

other separators; or characters not allowed by W3C XML 1.0 for 1
XML names.
XML element, attribute and type names MUST NOT use
[R 9009] acronyms, abbreviations, or other word truncations, except those 1
included in the defining organizations list of approved acronyms
and abbreviations.
The acronyms and abbreviations listed by the defining organization
[RBFA9] | MUST always be used in place of the word or phrase they 1

represent.

Acronyms MUST appear in all upper case except for when the
[R9100] acronym is the first set of characters of an attribute in which case 1
they will be all lower case.

XML Naming and Design Rules V3.0 1st Public Review Page 22 of 144

518

519
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

537
538

539
540
541

542

543
544

545
546

547
548
549
550
551
552

553
554
555
556
557

558
559

560
561

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

5.4 Reusability Scheme

UN/CEFACT is committed to an object based approach for its process models and
core component implementation efforts as supported in both UMM and CCTS.

UN/CEFACT considered adopting a type based approach (named types), a type and element based
approach, or an element based approach. A type based approach for XML management
provides the closest alignment with the process modelling methodology described in
UMM. Type information is beginning to be accessible when processing XML
instance documents. Post schema-validation infoset (PSVI) capabilities are
beginning to emerge that support this approach, such as “data-binding” software that
compiles schema into ready-to-use object classes and is capable of manipulating
XML data based on their types. The most significant drawback to a type based
approach is the risk of developing an inconsistent element vocabulary where
elements are declared locally and allowed to be reused without regard to semantic
clarity and consistency across types. UN/CEFACT manages this risk by carefully
controlling the creation of BBIEs and ASBIEs with fully defined semantic clarity that
are only usable within the ABIE in which they appear. This is accomplished through
the relationship between BBIEs, ASBIEs and their parent ABIE and the strict controls
put in place for harmonization and approval of the semantic constructs prior to their
XML Schema instantiation.

A purely type based approach does, however, limit the ability to reuse elements,
especially in technologies such as Web Services Description Language (WSDL).

For these reasons, UN/CEFACT implements a “hybrid approach” that provides
benefits over a pure type based approach. Most significantly it increases reusability
of library content both at the modelling and XML Schema level.

The key principles of the “hybrid approach” are:

e All classes (Invoice, Seller_Party, Buyer_Party, Invoice_Trade.Line.ltem and
Billed_Delivery in Figure 5-3) are declared as a xsd: complexType.

e All attributes of a class are declared as a local xsd: element within the
corresponding xsd: complexType.

e UML Aggregation Kind composition associations (e.g.
Invoice_Trade.Line.ltem and Billed_Delivery in Figure 5-3) will result in a
locally declared xsd:element with a globally declared xsd:complexType.
A composition ASBIE is defined as a specialized type of ASBIE that
represents a composition relationship between the associating ABIE and the
associated ABIE.

e An association that is not defined as composition (e.g. Invoice.Buyer.
Buyer_Party, Invoice. Seller. SellerParty in Figure 5-3) will result in a globally
declared xsd:element with a globally declared xsd: complexType. In
specific cases the schema will also allow the global element to be referenced
via the key/keyRef referencing mechanism.

The rules pertaining to the ‘hybrid approach’ are contained in sections 8.2.3 Type
Definitions and 8.2.4 Type Definitions for type and element declaration.

Figure 5-3 shows an example UML model and Example 5-9 shows the resulting XML
Schema declaration that results from the translation from UML to XML Schema

XML Naming and Design Rules V3.0 1st Public Review Page 23 of 144

XML Naming and Design Rules V3.0 1st Public Review

2008-08-07

clazs data draftdinuoize 11 .o /

Root Schema Fle Common Reusable Schema Fle
alut w8 |Ex
Inwaice Seller_ Party
washife | | EIE — .
+ 01 Pimary_ Hentiication: dentifier
+ 02 Additional_ Mentiication: ldentifier [0..7]
+ 03 Taw_ [dentification: Mentiier [0.7]
* + 04 Mame: Text [0..1]
EASIL A |En
| Einer _ Party
0.1 .8BIEs
+ 01 Pimary_ Hentiication: [dentifier
P 1 e + 0 Additional_ Mentifcation: dentifier [0..7
+ 03 Tan_ ldentification: Mentider [0.7]
+ 04 Mame: Text [0..1]
whB |Ex +08 Speciied
. Invoice_ Trade Llire kem
+lrvnied -
wPSHIEs
1.7| «BBIE: 0.
+ 01 Identification: Merntiier

wABIEs
Eilled_ Delivery

wBBIE«

01 Celiwered: Date handatory_ Date Time [0..1]
02 Depatched: Oate hMandatory Date Time [0..1]
03 Tax Point: Date [0.1]

04 Despatched: Quantty [0.7]

05 Billed: CQuantity [0..1]

06 Gross_ Wieight: Measure [0.1]

OF Met_ WMiight: Meaaure [0..1]

02 Theomrtical_ Uzight: MWea=une [0..1]

09 Product_ Unit: Quantity 0..1]

10 Pachage_ Lhit: Quantity [0..1]

11 Shipping Mares: Text 0.1]

o E o+

562

n
(0]
w

Figure 5-3 UML Model Example

Example 5-9: XML Schema declarations representing Figure 5-3.

<xsd:element

<xsd:element
<xsd:element
<xsd:element

<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

</xsd:sequence>
</xsd:complexType>
<xsd:sequence>
<xsd:element
</xsd:sequence>
</xsd:complexType>
<xsd:sequence>
<xsd:element
</xsd:sequence>
</xsd:complexType>
<xsd:sequence>
<xsd:element
</xsd:sequence>

</xsd:complexType>

<xsd:sequence>
<xsd:element

OO CYNININIOINIUININIOIOIOINIOTIOITIIOIOIOIOIUIOIOTIO10I010101010TINOINIOIOIUT
O OO OOHOOOOOOLOOOO 000000000000 00000000 N NN
O1RWNI2SOONOOTRWNI OO0 TR LN OO 00N TR WNI OO 00NoO1R

name="BuyerParty" type="ram:BuyerPartyType"/>
name="InvoiceTradeLineltem" type="ram:InvoiceTradeLineItemType"/>
name="SellerParty" type="ram:SellerPartyType"/>

<xsd:complexType name="InvoiceType">

name="ID" type="bdt:IDType"/>
ref="ram:SellerParty"/>
ref="ram:BuyerParty"/>
name="InvoiceTradeLineItem"

type="ram:InvoiceTradelLineItemType" maxOccurs="unbounded"/>

<xsd:complexType name="BuyerPartyType">

name="ID" type="bdt:IDType"/>

<xsd:complexType name="InvoiceTradeLineltemType">

name="ID" type="bdt:IDType"/>

<xsd:complexType name="BilledDeliveryType">

name="ID" type="bdt:IDType"/>

<xsd:complexType name="SellerPartyType">

name="ID" type="bdt:IDType"/>

name="InvoiceRequest" type="rsm:InvoiceType"/>

<xsd:element name="Name" type="bdt:NameType"/>

<xsd:element name="BilledDelivery" type="ram:BilledDeliveryType"/>

<xsd:element name="Name" type="bdt:NameType"/>

<xsd:element name="GivenName" type="bdt:NameType"/>
<xsd:element name="Surname" type="bdt:NameType"/>

XML Naming and Design Rules V3.0 1st Public Review

Page 24 of 144

610
611
612
613
614
615
616

(o) e)]
-
oo

(o)) OXTCYTHITHOXTITITHIOHTITICO
w GIGOCINININININNININNN—
w N—=2OOO~NOOIRWN—-OW©

DA IHIICICIO)
AR RRAOOOWOILWOI
~NOXOTRWNI_ODO0ONOOTR™

(e}
A B
o

650

651

652
653
654
655

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

</xsd:sequence>
</xsd:complexType>

5.5 Message Assembly Considerations
5.5.1 Implementation of Aggregations — Nesting or Referencing

Since aggregations relate ABIEs that have independent life cycles, the same
instance of a particular ABIE may be referenced more than once within a message.
An example, in the Insurance Industry, a ClaimNotify message shown below in
Example 5-10 and Example 5-11 the same Person ‘John Smith’ can play the role
of “Insured” in the Policy ABIE and the role of “Claimant” in the Claim ABIE. In order
to address this, it is possible to use XML referencing mechanism to relate one
Person instance to the Policy and Claim instances as an alternate method to nesting
information about Person within Policy and Claim.

Example 5-10: XML Instance using nesting

<ClaimNotify>
<Claim>
<ClaimantParty>

<Name>John Smith</Name>
</ClaimantParty>
<Claim>
<Policy>

<InsuredParty>

<Name>John Smith</Name>

</InsuredParty>
</Policy>
<ClaimNotify>

Example 5-11: XML Instance using referencing

<ClaimNotify>
<Party key="P1">
<Name>John Smith</Name>
</Party>
<Claim>
<ClaimantParty partyReference="P1"/>
<Claim>
<Policy>
<InsuredParty partyReference="P1"/>
</Policy>

<ClaimNotify>

In general, when the level of reuse of an instance ABIE in a message is significant it
becomes adequate to use XML referencing for the purpose of removing redundancy
from the message and increasing information integrity.

5.5.2 Other Usages of XML Referencing
This document also addresses dynamic referencing which is described as: Any
element composing a message is potentially the target of a reference for the purpose

of building dynamic relationships between elements within the message. An
important use case is identification of faulty elements for error reporting.

XML Naming and Design Rules V3.0 1st Public Review Page 25 of 144

656
657
658
659
660
661

662
663

664
665
666
667

668

669
670

671
672
673

674
675
676
677
678
679

680

681
682
683
684
685
686

687

688
689

690
691
692

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

General usage of dynamic referencing requires adding an optional identifier property
to XML elements. Such identifiers are typically used to build short XPath expressions
pointing to the XML element. Therefore this specification generalizes the addition of
an optional identifier attribute to each element defined as xsd: complexType, as
detailed in section 8.2.3 Type Definitions. Such an attribute can be used for dynamic
referencing as well as structural referencing in support of aggregations of ABIEs.

5.5.3 Schema Validation Requirements for XML References
5.5.3.1 Structural References between Aggregated ABIEs

For structural references between ABIEs, the level of validation performed by the
XML Schema definition of a message should be as strong as if the referenced
element would have been defined as a nested child of the element that references it.
Thus, the schema must strictly enforce identity constraints, i.e.:

1. Check uniqueness of the identifiers of the referenced elements

2. Check that the references match the identifiers of the corresponding
referenced elements.

This specification mandates key/keyRef as the XML referencing technique to be
used, instead of Id/IdRef, as detailed in section 8.1.5 Declaration of the
Referencing Constraints.

Referencing between ABIEs occur in the boundaries of a particular ‘scoping element’
in the XML document tree (scoping element means an element in the hierarchy of
the XML document under which a closed set of references can be defined). Most
often the scoping element will be the message root element but it can also be
another element lower in the hierarchy. The XML Schema language requires that the
key-keyref constraints be defined within a scoping element.

5.5.3.2 Dynamic References

For dynamic references schema validation is not required. Since dynamic
referencing is only used for ancillary purposes, it is not deemed essential to enforce
uniqueness of identifiers in the schema when they are not involved in structural
referencing. Uniqueness of such identifiers should be granted by use of adequate
algorithms for the generation of the identifiers. This will avoid unnecessary
complexity of the identity constraints.

Empty elements MUST NOT be used, except when their definition
[R B8B6] | include an identifier attribute that serves to reference another 1
element via schema identity constraints.

5.5.4 Message Assembly Definition Requirements
Figure 5-4 shows the Message Assembly Metamodel. The following is assumed for
generating a message schema:

e The message structure is specified by a model as defined by the UN/CEFACT
Business Message Template document, in the form of a single Message
Assembly (MA) component consisting of a hierarchy of Association Message

XML Naming and Design Rules V3.0 1st Public Review Page 26 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

693 Assemblies (ASMAs), including ASMAs that may have been derived from
694 other ASMAs within the same MA.
695 e Each ASMA recursively contains an ordered list of child ASMAs/ASMBIEs
696 down to the bottom of the hierarchy.
697 e Should referencing between specific MBIEs be required for the message in
698 the scope of a higher level MA or MBIE. A higher level MA or MBIE must
699 define the list of MBIEs that are implemented as referenced rather than
700 nested properties. This will allow the identity constraints to be generated in
701 the message schema.

<<InformationEnvelope>> is valid in 1.7

Rilcinecc Cnntayt

contains

<<InformationEntity>>

ASMA ASMA ASMA
0 0. 0
<<InformationEntity>> 00 <<InformationEntity>>
* —
ASMA

Messaging Business
702 L |

703 Figure 5.4: Business Message Template Metamodel
704 5.6 Namespace Scheme

705 A namespace is a collection of elements, attributes and types that serve to uniquely
706 distinguish the collection in a given business context.

707 “A XML namespace is identified by a URI reference [RFC3986]; element and
708 attribute names may be placed in an XML namespace...”.> UNCEFACT assigns
709 XML artifacts to a UNCEFACT namespace. These namespaces reflect logical
710 groupings as shown in Figure 5-5.

711 Each organization that intends to adhere to this specification will assign their XML
712 Schema defined content in a namespace that reflects the name of the organization
713 and context category in which the XML Schema is defined.

Each organization’s XML Schema components MUST be assigned

[R 984C] to a namespace for that organization.

2 http://www.w3.0rg/TR/2006/REC-xml-names-20060816/

XML Naming and Design Rules V3.0 1st Public Review Page 27 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Draft

Data T <Context FT—1 Major 1

Category>

Standard

UN

—T— UN/ECE F—1—1 UN/CEFACT [

Draft
— Code List —"T— Common H— Major —'{
Standard

Draft
| Documentation |[—p Common T Major —’\[
Standard
. Fifth Level .
FirstLevel | SecondLevel DTh'rd. LevalN FoDl:)rrt:ali_ne\iel Domain - | Sixth Le'://lell Seventh Level
Domain - UN | Domain — UN- "’j‘a'“ _h Resource Tvoe. Context * on;{am.—_ 89T | Domain — Status
Hierarchy ierarchy yp Category evision
714 Figure 5-5: UN/CEFACT Namespace Scheme

715

716
717
718
719
720

721
722
723

724

725
726

727
728
729

730

731
732

5.6.1 Namespace Uniform Resource ldentifiers

Namespaces must be persistent. Namespaces should be resolvable. A URI is used
for identifying a namespace. Within the URI space, options include Uniform
Resource Locators (URLs) and Uniform Resource Names (URNs). A URN has an
advantage in that it is persistent. A URL has an advantage in that it is most often
resolvable.

To ensure consistency, each namespace identifier will have the same general
structure. The URN namespace structure will follow the provisions of Internet
Engineering Task Force (IETF) Request For Comments (RFC) 2141 — URN Syntax.

The URN format will be:

urn:<organization>:<org hierarchy>[:<org hierarchy
level>] *:<schematype>:<context category>:<major>:<status>

The URL namespace structure will follow the provisions of Internet Engineering Task
Force (IETF) Request For Comments (RFC) 1738 — Uniform Resource Locators
(URL)

The URL format will be:

http://<organization>/<org hierarchy>[/<org hierarchy
level>] */<schematype>/<context category>/<major> /<status>

XML Naming and Design Rules V3.0 1st Public Review Page 28 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

733 Where:
734 e organization — An identifier of the organization providing the standard.
735 e org hierarchy — The first level of the hierarchy within the organization
736 providing the standard.
737 e org hierarchy level — Zero to n level hierarchy of the organization providing the
738 standard.
739 e schematype — A token identifying the type of schema module:
740 data|codelist|documentation
741 e context category — The context category [business process] for UN/CEFACT from the
742 UN/CEFACT catalogue of common business processes. Other values may be used by the
743 other organizations.
744 e major — The major version number
745 e status — The status of the schema as: draft|standard.
The XML Schema namespaces MUST use the following pattern:
URN | urn:<organization>:<org hierarchy>[:<org
: hierarchy level>]*:<schematype>:<context
category>:<major>:<status>
URL | http://<organization>/<org
: hierarchy>[/<org hierarchy
level>] */<schematype>/context
category/<major>/<status>
Where:
e organization — An identifier of the organization providing the
standard.
[R 8E2D]

e org hierarchy — The first level of the hierarchy within the
organization providing the standard.

e org hierarchy level — Zero to n level hierarchy of the
organization providing the standard.

e schematype — A token identifying the type of schema module:
data|codelist|documentation

e context category — The context category [business process] for
UN/CEFACT from the UN/CEFACT catalogue of common
business processes. Other values may be used by the other
organizations.

e major — The major version number

e status — The status of the schema as: draft|standard.

746 UN/CEFACT has determined that URNs are most appropriate as persistence is of a
747 higher priority for UN/CEFACT. Furthermore, UN/CEFACT recommends that URNs

XML Naming and Design Rules V3.0 1st Public Review Page 29 of 144

748
749

750

751

752

753

754
755

756

757
758

759
760
761
762
763

764
765

766

767
768
769
770

771
772
773
774
775
776

7
778
779

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

be used by other organizations that use this NDR. However, each organization using
this NDR ultimately must decide for themselves which is more important to them.

UN/CEFACT namespaces MUST be defined as Uniform Resource
[R 8CED] 3
Names.
Example 5-12: Namespace Name at Draft Status
"urn:un:unece:uncefact:data:ordermanagement:1l:draft"
Example 5-13: Namespace Name at Specification Status
"urn:un:unece:uncefact:data:odermanagement:1:standard”
Once a namespace’s content is published, any change that breaks backwards
compatibility will require a new namespace.
R B56B] Published namespace content MUST NOT be changed unless 1
such change does not break backward compatibility.

5.6.2 Namespace Tokens

Namespace URIs are typically aliased by using tokens rather than citing the entire
URI as the qualifier in a qualified name of a given XML Schema File.

As identified in the namespace scheme defined in section 5.6.1 Namespace Uniform
Resource Identifiers will be assigned to namespaces based on a context value
category. Namespace tokens representing the namespace will be created using
three character representations for each unique value within the chosen context
category.

XML Schema files that are defined for common CodelList will use a token that is
prefixed with ‘clm’.

5.7 XML Schema Files

A XML Schema file is a schema document realized as a physical file. As defined by
the W3C, a schema document represents relevant instantiations of the thirteen
defined W3C XML Schema XML Schema Components that collectively comprise an
abstract data model.

XML Schema files created from this specification represent abstract data models for
messages, CCTS conformant ABIEs, BDTs, restricted code lists and referenced
common code lists. Figure 5-6 shows how the messages, CCTS conformant ABIEs,
BDTs, and restricted code lists within a given context category are assigned to a
single namespace. Since common code lists are applicable to all context categories,
each resides in its own namespace.

XML Schema files can be either unique in their functionality, or represent splitting of
larger XML Schema files for performance or manageability enhancement. A well
thought out approach to the layout provides an efficient and effective mechanism for

XML Naming and Design Rules V3.0 1st Public Review Page 30 of 144

780
781

782
783

784
785
786
787
788
789
790
791
792
793

794
795
796
797
798
799

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

providing components as needed rather than dealing with complex, multi-focused
XML Schema files.

Root XML Schema File

BIE XML Schema File

Business Data Type
XML Schema File

Restricted Code List
XML Schema File

Namespace

Figure 5-6: UN/CEFACT XML Schema Files

UN/CEFACT has defined a number of XML Schema files to support this approach.
These XML Schema files are defined for the given context category value.
UNCEFACT XML Schema namespaces are defined based upon Business Process
Value. For each Business Process Value which is defined as a separate namespace
a set of Root XML Schema files (one per business information payload), a common
BIE XML Schema File, a BDT XML Schema File, a set of restricted Code List XML
Schema File. Furthermore, where common code lists can be used the given Code
List XML Schema file may be imported into the BDT XML Schema File and/or
Restricted Code List XML Schema file. Dependencies exist among the various files
as shown in Figure 5-7.

Each of the Root XML Schema files defined with in the given context category
namespace (UNCEFCT uses Business Process) always includes the ABIE XML
Schema file and the BDT XML Schema file. The ABIE XML Schema file always
includes the BDT XML Schema file. The BDT XML Schema file always include zero
or more Restricted CodeList XML Schema files, it also always imports zero or more
Common Code List XML Schema files.

The XML Schema file name for files other than code lists MUST be
of the form <SchemaModuleName> <Version>.xsd, with

[R 92B8] periods, spaces, or other separators_and the words XML Schema 3
File removed.
[R 8D58] When representing versioning schemes in file names, the period 3

MUST be represented by a lowercase p.

XML Naming and Design Rules V3.0 1st Public Review Page 31 of 144

800
801

802

803
804
805
806

807
808
809

810
811

812
813
814

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Context Category Namespace

Root XML Schema File

1

BIE XML Schema File
1 \(1

BDT XML Schema File

1 0.*

Restricted Code List XML
Schema File

74
1

Common Code List Namespace

0.* 0.*

Common Code List XML Schema File

Figure 5-7: UN/CEFACT XML Schema Modularity Scheme
5.7.1 Root XML Schema Files

This NDR specification requires that the namespace reflect the dominate context
category value for the XML Schema files being defined by the defining organization.
For UN/CEFACT that dominate context category is the Business Process context
category.

The set of root schema files within a given context category are assigned to the
namespace of that context category. The UN/CEFACT namespace scheme shown in
Figure 5-5 reflects this approach.

Each xsd: schema element used to define an XML Schema Document will have the
namespace declared using xsd: targetNamespace.

[R B387] Every XML Schema file MUST have a namespace declared, using

the xsd: targetNamespace attribute.

The UN/CEFACT modularity approach provides for a reusable BIE XML Schema file
and a BDT XML Schema file that are used by a set of Root XML Schema files within
the given context category namespace.

XML Naming and Design Rules V3.0 1st Public Review Page 32 of 144

815
816
817
818

819
820
821
822
823

824
825
826
827
828
829

830
831
832
833
834
835

836

837
838
839
840
841
842
843
844
845
846

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

The contents of a schema set are so interrelated that proper management dictates
that both versioning and namespace of all members of the set be synchronized so
that concept collisions are avoided. Schema sets are therefore assigned to a single,
versioned namespace.

UN/CEFACT incorporates a XML Schema file modularity scheme that leverages the
benefits described in the UN/CEFACT XML Schema artefact repository. There are a
number of UN/CEFACT Root XML Schema, each of which expresses a separate
business information payload. The Root XML Schema files include the recognized
business transactions for the given context category based namespace.

A Root XML Schema file MUST be created for each unique

[R9354] | 1 siness information payload.

To ensure uniqueness, Root XML Schema files will be given unique names that
reflect the business function being addressed by the schema. This business function
is described in the UN/CEFACT Requirements Specification Mapping (RSM)
document as the target business information payload. The business information
payload name representing the business function will form the basis for the Root
XML Schema file name.

Each Root XML Schema File MUST be named after the
[R B3E4] | <BusinessInformationPayload> XML Schema File in the 1
documentation within the XML Schema File.

This approach enables the use of individual context category focused Root XML
Schema files without importing the entire library. Each Root XML Schema will
define its own dependencies. A Root XML Schema file should not duplicate
common reusable XML constructs contained in the common ABIE XML Schema file
for the given context category. Specifically, Root XML Schema files will include
other XML Schema files to maximize reuse for the given context category.

A Root XML Schema file MUST NOT replicate reusable constructs
[R 9961] available in XML Schema files that can be referenced through 1
xsd:include.

5.7.2 Business Data Type XML Schema Files

The CCTS Business Data Types (BDTs) define the value domain for a Basic
Business Information Entity. The value domain is defined by selecting from one of
the allowed primitives for the BDT and providing additional restrictions if desired
through the use of supplementary components. UN/CEFACT publishes a BDT XML
Schema File that consists of all BDTs without restriction to the value domain. This
schema file resides in its own namespace and is used for reference purposes only.
Additional BDT Schema will be created and published as BDT XML Schema Files
within the namespace of the context category it supports. Each BDT XML Schema
File will have a standardized name that uniquely differentiates it from other
UN/CEFACT XML Schema Files.

[R AA56] | A Business Data Type XML Schema File MUST be created within | 1

XML Naming and Design Rules V3.0 1st Public Review Page 33 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

each context category based namespace.

The bdt:BusinessDataType XML Schema File MUST be named
[R 847C] | ’Business Data Type XML Schema File’ in the documentation 1
within the XML Schema File.

847 5.7.3 Business Information Entity XML Schema Files

848 A BIE XML Schema File will be created to contain XML Schema Components used
849 to define the common reusable ABIEs and their BBIEs and ASBIEs within the

850 principal context category used for namespace. Where desired, these BIE XML
851 Schema files may be further compressed for runtime performance considerations if
852 necessary through the creation of a runtime version that only includes those ABIEs
853 necessary to support the root schema including it.

854 Each BIE XML Schema File will have a standardized name that uniquely
855 differentiates it from other UN/CEFACT XML Schema Files.

One Business Information Entity XML Schema Files MUST be
[R 8238] created for the context category that is expressed in the 1
namespace.

The BusinessInformationEntity XML Schema file MUST be named
[R 8252] ‘Business Information Entity XML Schema File’ by placing the 1
name within the Header documentation section of the file.

856 5.7.4 Code List XML Scehema Files
857 5.7.4.1 Restricted Code List XML Schema Files

858 A set of restricted code list may be created in cases where a restricted common

859 code list is required or where a code list does not currently exist and one can be

860 identified. These restricted code list are to be defined in the same namespace as the
861 XML Schema that make use of them such that the context category value in which
862 they are valid is present.

863 Each Code List XML Schema file will contain enumeration values for codes and code
864 values.

865 Code list schema modules will have a standardized name that uniquely differentiates
866 it from other UN/CEFACT XML Schema Files and external organization generated
867 code list files.

[R BD2F] A Restricted Code Lixt XML Schema File MUST be created for 1
each restricted code list used by a BDT.

Each Restricted Code List XML Schema File MUST contain

[R 942D] enumeration values for both the actual codes and the code values.

Each Restricted Code List XML Schema File MUST be given a

[R AG2F] unique name within the namespace it belongs.

XML Naming and Design Rules V3.0 1st Public Review Page 34 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

868 5.7.4.2 Common Code List XML Schema Files

869 Some common code lists are published by standards organizations to represent a
870 set of commonly accepted codes that are used in a variety of business

871 circumstances and contexts. A reusable Common Code List XML Schema file will
872 be created for each code list that represents a published standard code list.

Cases where code lists are used within the XML Schema, a Code
[R 8A68] | List XML Schema file MUST be created to convey code list
enumerations for each code list being used.

873 Common Code List XML Schema files will have a standardized name that uniquely
874 differentiates it from other UN/CEFACT XML Schema files and other external
875 organization generated code list files.

Each Common Code List XML Schema File must be given a
[R B443] | unique name that represents the name of the code list and is
unique within the namespace it belongs.

The name of each clm:CodeList XML Schema File as defined in
the comment within the XML Schema File MUST be of the form:

<Code List Agency Identifier|Code List Agency
Name><Code List Identification Identifier|Code
List Name>” - Code List XML Schema File”

Where:

[R BOAD] e Code List Agency Identifier — Identifies the agency that
maintains the code list

e Code List Agency Name — Agency that maintains the code
list

e Code List Identification Identifier — Identifies a list of the
respective corresponding codes

e Code List Name — The name of the code list as assigned by
the agency that maintains the code list.

876 Example 5-14: Name of UN/CEFACT Account Type Code List XML Schema File Name using
877 Identifiers

878 64437 - Code List XML Schema File

879 where:

880 6 = Code list agency identifier for UN/CEFACT as defined in UN/CEFACT code
881 list 3055

882 4437 = Code list identification identifier for Account Type Code in UN/CEFACT
883 directory

884 Example 5-15: Name of UN/CEFACT Security Type Code List XML Schema File Name using
885 Names

886 Security Initiative Document Security Code - Code List XML Schema File

XML Naming and Design Rules V3.0 1st Public Review Page 35 of 144

887

888
889
890
891

892
893

894

895
896
897
898
899

900
901
902
903
904
905
906
907
908

909
910
911
912
913
914
915
916
917
918

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

5.7.5 Other Standard Bodies BIE XML Schema Files

Other Standards Development Organizations create and make publicly available BIE
XML Schema Files. UN/CEFACT will only import these other SDO BIE XML
Schema Files when their contents are in strict conformance to the requirements of
the CCTS technical specification and this NDR technical specification.

Strict conformance means that a schema is conformant to category 1, 2, 3,4 and 7
rules as defined in rule B998.

Imported XML Schema Files MUST be fully conformant to

[R B564] category 1, 2, 3, 4 and 7 rules as defined in Rule B998. 4
Imported XML Schema File components MUST be derived using
R 9733] these NDR rules from artifacts that are fully conformant to the 4

latest version of the UN/CEFACT Core Components Technical
Specification.

5.8 Schema Location

Schema locations:
e Are required to be in the form of a URI scheme;
e Are associated to the namespace of the file being accessed;
o Are typically defined as URLs because of resolvability limitations of URNSs;
e Can be defined as absolute path or relative paths.

According to the W3C XML Schema specification, part 0, the schemalLocation
attribute “... provides hints from the author to a processor regarding the location of a
schema document. The author warrants that these schema documents are relevant
to checking the validity of the document content, on a namespace by namespace
basis.” The value provided in the xsi : schemaLocation attribute is "...only a hint
and some processors and applications will have reasons to not use it." Thus the
presence of these hints does not require the processor to obtain or use the cited
schema documents, and the processor is free to use other schemas obtained by any
suitable means, or to use no schema at all.

In practical implementations many XML tools attempt to acquire resources using the
schema location attribute. The implication of the schemaLocation attribute pointing to
an absolute path (e.g., hard-drive location; URL) is that when tools attempt to
acquire the resources and they are not available at the specified location, the tool
may raise errors. In the case of URL-formatted schemalocation values, this might
occur after a seemingly lengthy timeout period, a period in which other work cannot
be done. On the other hand, relative paths increase the likelihood that resources will
be readily available to tools (assuming well organized schema files). Thus using an
absolute path approach with URL-formatted schemalocation values often represents
a challenge in practical implementations as it requires open internet connections at

8 http://www.w3.org/TR/xmlschema-0/#schemalocation

XML Naming and Design Rules V3.0 1st Public Review Page 36 of 144

919
920

921
922
923
924
925

930
931
932
933
934

935
936
937

938

939
940

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

run-time (due to tool implementations) and is seen as a security issue by a number
of implementers.

Providing the schemaLocation value as a relative path provides an overall
improvement in user productivity, including off-line use. It is important to note that
this approach doesn't prohibit making resources available on-line (much in the same
way that HTML documents frequently provided references to relative locations for
images).

Each xsd: schemal.ocation attribute declaration MUST contain
[R 8F8D] | aresolvable URL. This may include a relative path reference from | 2
the location of the current XML Schema file.

Example 5-16: Example of relative path schemaLocation.

<xsd:import namespace="urn:un:unece:uncefact:ordermanagementdata:draft:1"
schemaLocation="../../data/draft/BusinessDataType 1p0.xsd"/>

5.9 Versioning Scheme

The UN/CEFACT versioning scheme consists of:
e Status of the XML Schema file,
e A major version number,
e A minor version number and
e Arevision number.

These values are declared in the version attribute in the xsd: schema element. The
major version number is also reflected in the namespace declaration for each XML
Schema file (R 8E2D).

[R BF17] | The xsd: schema version attribute MUST always be declared. 1

The xsd: schema version attribute MUST use the following
template:

<xsd:schema ... version="Draft” | ”Standard”

9 ”_"

_<major>"p”’<minor>[”p”"<revision>]">

Where:
[R 84BE] . 2
e Draft | Standard - is used based upon the status.
e <major> - sequential number of the major version.

e <minor> - sequential number of the minor version

e <revision> - optional sequential number of the revision.

5.9.1 Major Versions

A major version of a UN/CEFACT XML Schema file constitutes significant non-
backwards compatible changes. If any XML instance based on an older major

XML Naming and Design Rules V3.0 1st Public Review Page 37 of 144

941
942
943

944
945
946
947
948

949
950
951

952

953
954

955
956
957
958
959
960

961
962
963

964
965
966
967
968
969
970

971
972
973
974

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

version of UN/CEFACT XML Schema attempts validation against a newer version, it
may experience validation errors. A new major version will be produced when non-
backward compatible changes occur. This would include the following changes:

e Removing or changing values in enumerations

e Changing of element names, type names and attribute names

e Changing the structures so as to break polymorphic processing capabilities
e Deleting or adding mandatory elements or attributes

e Changing cardinality from mandatory to optional

Major version numbers will be based on logical progressions to ensure semantic
understanding of the approach and guarantee consistency in representation. Non-
negative, sequentially assigned incremental integers satisfy this requirement.

Every XML Schema file major version number MUST be a

[R 9049] sequentially assigned incremental integer greater then zero.

5.9.2 Minor Versions

The minor versioning of an XML Schema file identifies its compatibility with the
preceding and subsequently minor versions within the same major version.

Within a major version of an UN/CEFACT XML Schema file there can be a series of
minor, or backward compatible, changes. The minor versioning of an UN/CEFACT
XML Schema file determines its compatibility with UN/CEFACT XML Schema files
with preceding and subsequent minor versions within the same major version. The
minor versioning scheme thus helps to identify backward and forward compatibility.
Minor versions will only be increased when compatible changes occur, i.e

e Adding values to enumerations
e Optional extensions

e Add optional elements

Minor versioning MUST be limited to declaring new optional XML
[R A735] | content, extending existing XML content, or refinements of an 1
optional nature.

Minor versions will be declared using the xsd:version attribute in the

xsd: schema element. It is only necessary to declare the minor version in the
schema version attribute since instance documents with different minor versions are
compatible with the major version held in the same namespace. By using the version
attribute in each document instance, the application can provide the appropriate logic
switch for different compatible versions without having knowledge of the schema
version which the document instance was delivered.

Minor version changes are not allowed to break compatibility with previous versions
within the same major version. Compatibility includes consistency in naming of the
schema constructs to include elements, attributes, and types. UN/CEFACT minor
version changes will not include renaming XML Schema constructs.

XML Naming and Design Rules V3.0 1st Public Review Page 38 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

975 For a particular namespace, the major version and subsequent minor versions and
976 revisions create a linear relationship.

[R AFAS] g/lrltg}grcgrsmns MUST NOT rename existing XML Schema defined

Changes in minor versions MUST NOT break semantic
[R BBD5] | compatibility with prior versions having the same major version
number.

XML Schema files for a minor version XML Schema MUST
[R998B] | incorporate all XML Schema components from the immediately
preceding version of the XML Schema file.

977

XML Naming and Design Rules V3.0 1st Public Review Page 39 of 144

978

979
980
981
982

983
984

985
986

987
988

989
990
991

992
993
994
995
996
997
998

999
1000
1001
1002
1003
1004

1005
1006

1007

1008
1009
1010
1011
1012

1013
1014
1015
1016

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

6 Application of Context

The intent of the UN/CEFACT XML Schema and the NDR is to express everything
that is necessary to enable integration of business information within an XML
Schema conformant XML instance message. To accomplish this, the XML Schema
must address all aspects of the business information to include:

e Business semantics — The meaning of business information in
communication.

o Meaning can carry between different individuals depending upon the
context of the sender and receiver of the information.

o Meaning can be the same between different individuals depending
context of the sender and receiver of the information.

e Business context — The circumstances that determine the meaning of
business information. The business context may change the semantic
meaning for the sender and or the receiver of the information.

In CCTS, CCs are context neutral artifacts that when context is applied, result in BIE
artifacts. To help standardize the process, CCTS defines different context categories
that capture the different context category values. BIE artifacts and their XML
Component expressions may be defined within any number of combinations of
context categories and context category values. The namespace mechanism will
ensure name collision of similarly named components in different contexts does not
occur.

XML Schema Components representing BIE artifacts will be grouped by a single
principal context category value. This principal context value will be expressed as
part of the namespace to which the component is assigned. For UN/CEFACT this
principal context category will be the Business Process value in which the BIE
artifact is defined. Other organizations may choose to express any context category
value in the namespace that fits their requirements.

How the principal context category is defined in the namespace scheme is described
in section 5.6.

Note:

it is possible to extend the namespace described in section 5.6 for an
implementation set of schemas to include a Context Identifier on the end of the
namespace to express the full context of the reduced set of XML Schemas. While
this Context Identifier is out side the scope of this technical specification, it is
recommended that this identifier be a Univerisally Unique Identifier (UUID).

In addition to the principal context category, all other context category values for
every BIE is expressed within the XML Schema definition for each XSD Schema
Component as an xsd: appInfo declaration following the structure defined in
section 7.5.2.

XML Naming and Design Rules V3.0 1st Public Review Page 40 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

1017 7 General XML Schema Definition Language Conventions

1018 The XML Schema language has many constructs that can be used to express a
1019 model. The purpose of this section is to provide a profile of these constructs that can
1020 be used and to identify the constructs that should not be used as a result of general
1021 best practices.

1022 This section defines rules related to general XML Schema Language Conventions:
1023 e XML Schema Construct

1024 e Attribute and Element Declaration

1025 e Type Definitions

1026 e Use of XML Schema Extension and Restriction
1027 e Annotation

1028 7.1 Overall XML Schema Structure and Rules
1029 7.1.1 XML Schema Declaration

1030 When defining an XML Schema file the first line must indicate the xml version and
1031 the encoding it uses. UN/CEFACT XML Schema will be defined UTF-8 encoding.

The first line in an XML Schema file MUST contain:
[R 8DB4] 1

29
“<?xml version="1.0" encoding="UTF-8"?>

1032 Example 7-1 provides the form this information is provided.

1033 Example 7-1: XML Schema File Line 1 setting the XML version and encoding

1 034 <?xml version="1.0" encoding="UTF-8"7?>

1035 7.1.2 XML Schema File Identification and Copyright Information

1036 After the first line there can be documentation typically in the form of xsd: comment
1037 lines. These comments are applicable to the XML Schema file.

Every XML Schema File MUST contain a comment that identifies

[R ABDZ] its name immediately following the XML declaration.

Every XML Schema File MUST contain a comment that identifies
[R BD41] | its owning agency, version and date immediately following the 1
schema name comment using the format defined in Appendix B-2.

1038 7.1.3 Schema Declaration

1039 The xsd:schema element must be declared to define an XML Schema document. The
1040 xsd:schema element includes attributes that affect how the rest of the document

1041 behaves and how XML parsers and other tools treat it. XML Schema best practice
1042 indicates:

XML Naming and Design Rules V3.0 1st Public Review Page 41 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

1043 e elementFormDefault be set to qualified.
1044 e attributeFormDefault be set to unqualified.
1045 e The prefix xsd be used to refer to the XML Schema namespace.

The xsd:elementFormDefault attribute MUST be declared and
[RAOEf] |. o 1
its value set to qualified.

The xsd:attributeFormDefault attribute MUST be declared
[R A9C5] ; i 1
and its value set to unqualified.

The xsd prefix MUST be used in all cases when referring to the
[R9B18] | namespace http://www.w3.0rg/2001/XMLSchema as follows: | 1
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema.

1046 Example 7-2 shows a XML Schema code snippet declaring the namespace token
1047 xsd, setting elementFormDefault to qualified and setting
1048 attributeFormDefault to unqualified.

1049 Example 7-2: Element and Attribute Form Default

1050 <xsd:schema targetNamespace=" ... see namespace ...
1051 xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
1052 elementFormDefault="qualified" attributeFormDefault="unqualified">

1053 7.1.4 CCTS Artifact Metadata

1054 CCTS defines specific metadata associated with each CCTS artifact. This metadata
1055 will be expressed as a separate CCTS Metadata XML Schema File.

1056 The CCTS XML Schema File will be named Core Components Technical
1057 Specification Schema File.

1058 The CCTS XML Schema File will be assigned to its own namespace and use a prefix
1059 of ecets. The current version of this namespace is:

1060 wurn:un:unece:uncefact:documentation:common:3:standard:CoreComp
1061 onentsTechnicalSpecification.

All required CCTS metadata for ABIEs, BBIEs, ASBIEs, and BDTs

[RSOF] | must be defined in an XML Schema file.

The name of the CCTS Metadata XML Schema file will be “Core
[R9623] | Components Technical Specification Schema File” and will be 1
defined within the comment within the XML Schema file.

The CCTS Metadata XML Schema File MUST reside in its own
[R 9443] | namespace which MUST be defined in accordance with rule 8E2D | 1
and assigned the prefix ccts.

XML Naming and Design Rules V3.0 1st Public Review Page 42 of 144

1062

1063
1064
1065

1066
1067

1068

1069

1070
1071
1072

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

7.1.5 Constraints on Schema Construction

In addition to general XML Schema structure, best practice identifies constraints on
certain XML Schema rules necessary to ensure maximum interoperability for
business-to-business and application-to-application interoperability.

[R AD26] | xsd:notation MUST NOT be used. 1
[R ABFF] The xsd: any element MUST NOT be used. 4,

6
[R AEBB] The xsd: any attribute MUST NOT be used. 4,

6
[R 9859] Mixed content MUST NOT be used. 1
[R 926D] xsd:substitutionGroup MUST NOT be used. 4,

6
[R 8A83] | xsd:ID/xsd:IDREF MUST NOT be used. 1
[R8E89] | xsd:key/xsd:keyref MUST be used for element referencing. 1

7.2 Attribute and Element Declarations
7.2.1 Attributes

Attributes are only used in two cases:

e To convey the supplementary components of BDTs;

e To serve as identifiers and references when two elements need to be related
to one another via schema identify constraints such as key-key-ref
constraints.

Supplementary component information MUST be represented as
[R B221] :
Attributes.

[R AFEE] User defined attributes MUST only be used for Supplementary
components.

Attributes MUST be used rather than elements to serve as
[R 8EE7] | identifiers when two elements need to be related to one another 1
via schema identity constraints.

An xsd:attribute that represents a supplementary component
[ROFEC] | with variable information MUST be based on an appropriate XML 1
Schema built-in simpleType.

[R B2ES] A xsd:attribute that represents a supplementary component 1

which uses codes MUST be based on the xsd: simpleType of

XML Naming and Design Rules V3.0 1st Public Review Page 43 of 144

1073

1074
1075

1076

1077
1078

1079
1080

LR R WK WL WL R WHR WU WL WL W 4

PO O0O000O0OO0O0O0OO0O0O0O0OO000
OO0 OOOOHOOOLODOODOOC00000000000000000

OYOIRLWNI2OO00~NO TR LWNI 2O 0ONOTTRWN—

-
-
o
N

1108
1109
1110
1111

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

the appropriate code list.

A xsd:attribute that represents a supplementary component
[R 84A6] | which uses identifiers MUST be based on the xsd: simpleType 1
of the appropriate identifier scheme.

7.2.2 Elements

Elements are declared for the document level business information payload, ABIEs,
BBIEs, and ASBIEs.

7.2.2.1 Element Declaration

Every ccts : BBIE artefact is declared as an xsd: element of the simple or
complex type that instantiates its BDT.

Every BBIE leaf element declaration MUST be of the
[R BCD6] | BusinessDataType that represents the source basic business 1
information entity (BBIE) data type.

Example 7-3 shows an example declaration.

Example 7-3: Element Declaration

<xsd:complexType name="AccountType">
<xsd:annotation>
...see annotation...
</xsd:annotation>
<xsd:sequence>
<xsd:element name="ID" type="bdt:IDType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
...see annotation...
</xsd:annotation>
</xsd:element>
<xsd:element name="Status" type="ram:StatusType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
...see annotation...
</xsd:annotation>
</xsd:element>
<xsd:element name="Name" type="bdt:NameType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
...see annotation...
</xsd:annotation>
</xsd:element>
<xsd:element name="BuyerParty” type="ram:BuyerPartyType/>
</xsd:sequence>
</xsd:complexType>

7.2.2.2 Empty Elements

In general, the absence of an element in an XML schema does not have any
particular meaning - it may indicate that the information is unknown, or not
applicable, or the element may be absent for some other reason. The XML Schema
specification does provide a feature, the xsd:nillable attribute, whereby an element

XML Naming and Design Rules V3.0 1st Public Review Page 44 of 144

1112
1113

1114
1115

1116

1117
1118

1119
1120

N NV G G G VT
- NN
» BB IROIWLWWW
[¢)] S OON—-2OO0~NOOT

1146
1147
1148

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

may be transferred with no content, but still use its attributes and thus carry semantic
meaning.

In order to respect the principles of the CCTS and to retain semantic clarity the
nillability feature of XML Schema will not be used by UN/CEFACT XML Schemas.

[R8337] | The xsd:nillable attribute MUST NOT be used. 1

7.3 Type Definitions

An XML Schema Type defines simple and complex structures used to define an
element.

All elements declared will have a named type that provides the definition of the
structure of the XML Schema Component using it.

[R 8608] | Anonyms types MUST NOT be used. 1

7.3.1 Simple Type Definitions

xsd:simpleTypes must always be used where they satisfy the user’s business
requirements. Where these business requirements cannot be satisfied, user defined
complex type definitions will be used. Examples7-4 shows a simple type defined in
the BDT XML Schema file. Example 7-5 shows a simple type defined in a Code List
XML Schema file.

Example 7-4: Simple Types in Businsess Data Type XML Schema File

<xsd:simpleType name="DateTimeType">
<xsd:annotation>
.. see annotation ..
</xsd:annotation>
<xsd:restriction base="xsd:dateTime"/>
</xsd:simpleType>

Example 7-5: Simple Types in a Code Lists XML Schema File

<xsd:simpleType name="CurrencyCodeContentType">
<xsd:restriction base="xsd:token">
<xsd:enumeration value="ADP">
..see enumeration of code lists ..
</xsd:enumeration>
<xsd:annotation>
.. see annotation ..
</xsd:annotation>
</xsd:restriction>
</xsd:simpleType>

7.3.2 Complex Type Definitions

A complex type will be defined to express the content model of each CCTS BIE. A
complex type will also be defined to express the value domain of a CCTS BDT when
an XML Schema built-in data type does not convey all necessary information.

[R A4CE] | An xsd:complexType MUST be defined for each CCTS BIE. 1

XML Naming and Design Rules V3.0 1st Public Review Page 45 of 144

1149

R G W N W W -
JEE G I W N W W -
(&)}
o

QIOITINIIOI0I0T
CO~NOYU1-RWN—

-
N
(&)
©

1160
1161

1162

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

1173
1174
1175
1176

1177
1178

1179
1180

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

An xsd: complexType MUST be defined for each CCTS BDT

[RBC3C] that cannot be fully expressed using an xsd: simpleType.

Example 7-6 shows a complex type defined for an Account ABIE.
Example 7-6: Complex Type of Object Class “AccountType”

<xsd:complexType name="AccountType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:sequence>
. see element declaration ...
</xsd:sequence>
</xsd:complexType>

In order to increase consistency in use and enable accurate and complete
representation of what is allowed in the design of CCTS artefacts, the xsd:al1l XML
Schema Component will not be used.

[RAO010] | The xsd:all element MUST NOT be used. 1

7.4 Use of Extension and Restriction

The general philosophy is that all UN/CEFACT XML Schema Components will follow
the model defined in Figure 5-2. These XML Schema Components are based on the
concept that the underlying semantic structures of the CCs and BIEs are normative
forms of standards that developers are not allowed to alter without coordination of
appropriate TBG groups (including TBG17 - Harmonization) and ICG. As business
requirements dictate, new CC artifacts and BIE artifacts will be created and
represented through XML Schema Components by defining new types and elements
declared as appropriate. The concept of derivation through the use of
xsd:extension and xsd:restriction will only be used in limited
circumstances.

It is understood that other standards organizations using this specification may have
use either xsd:extension and/or xsd: restriction to define new constructs
that are extended or restricted from existing constructs. While UN/CEFACT XML
Schema Files will not use these other organizations may.

7.4.1 Extension
UN/CEFACT XML Schema Files may only use xsd:extension in the Business

Data Type XML Schema File to declare attributes to accommodate supplementary
components.

[R AB3F] xsd:extension MUST only be used in the Business DataType 4
XML Schema file. 6
[R 9D6E] xsd:extension MUST only be used for declaring xsd:attributes | 4
to accommodate relevant supplementary components. 6

XML Naming and Design Rules V3.0 1st Public Review Page 46 of 144

1181

1182
1183
1184
1185
1186
1187

1188

N N G G T N
N NN -
(o) LOOOLOLOODO©O o]
© 0O~NIOYO1-RWN—-O [{e]

1200
1201

1202

1203
1204
1205
1206

1207
1208
1209
1210
1211

1212
1213
1214
1215

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

7.4.2 Restriction

The CCTS specification employs the concept of semantic restriction in creating
specific instantiations of core components. Accordingly, xsd:restriction will be
used as appropriate to define types that are derived from the existing types. Where
used, the derived types must always be renamed. Simple and complex type
restrictions may be used. xsd:restriction can be used for facet restriction
and/or attribute restriction.

When xsd:restriction is applied to a xsd: simpleType or
[R 8AF7] | xsd:complexType that represents a data type the derived construct | 1
MUST use a different name.

Example 7-7 shows a restriction of a simple type.
Example 7-7: Restriction of Simple Type

<xsd:simpleType name="TaxAmountType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:restriction base="bdt:AmountType">
<xsd:totalDigits value="10"/>
<xsd:fractionDigits value="3"/>
</xsd:restriction>
</xsd:simpleType>

7.5 Annotation

All UN/CEFACT XML Schema constructs will use xsd:annotation to provide the
documentation and indicate the application of context categories specified by CCTS.

Each defined or declared construct MUST use the

[R847Al | xsd:annotation element for required CCTS documentation.

7.5.1 Documentation

The annotation xsd:documentation will be used to convey all metadata as
specified in the CCTS, i.e., to convey the semantic content carried in the XML
construct. All elements specified within an xsd: documentation element will be
expressions of ccts artifact metadata.

As identified in section 7.1.4, a CCTS Metadata XML Schema File contains
definitions for all required CCTS metadata for those CCTS artifacts used in this
technical specification. The CCTS Metadata XML Schema File will be imported in all
Root, ABIE, Code List, and BDT schema which contain xsd:documentation
elements.

The following annotations are required as defined in section Error! Reference
source not found. Error! Reference source not found. in type definitions and
element declarations (the representation of each item in XML code is shown in
parenthesis):

XML Naming and Design Rules V3.0 1st Public Review Page 47 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

¢ UniquelD - The unique identifier assigned to the artefact in the library.
(UniquelD)

o The UniquelD is based on EntityUniqueldentifierType, which refers to
the schema module "CCIS1 Entity Unique |dentification Scheme" that
provides the suggested schema pattern: "UNBEQ-9%{6}

e VersionID — The unique identifier assigned to the version of the artefact in the
library.

o The VersionID is based on VersionldentifierType, which refers to the
scheme module "CCTS4 Versioning Identification Scheme" that
provides the suggested schema pattern: 0-9%{1,2}\.0-9%{2}

¢ SequencingKeylID — Indicates the sequence of the documentation.

e CCTS Artefact — The type of component. The possible values are:
RSM|BBIE |ABIE |ASBIE |BDT

e Name - The name of the supplementary component or business information
payload. (Name)

e Definition — The semantic meaning of the artefact. (Definition)

o The Definition is based on BDT "TextType". The language
representation should follow the same approach as described for
name.

e Cardinality — Indicates the cardinality of the documentation.

e Object Class Qualifier Name — A name that qualifies the Object Class.
¢ Object Class Name — The Object Class represented by the artefact.

e PropertyQualifier Name — The name of the property qualifier.

e PropertyTermName — The name of the property.

¢ RepresentationTermName — The name of the representation term.

e UsageRule — Indicates the Usage Rule of the Object.

e BusinessTermName - A synonym term under which the artefact is
commonly known and used in business. (BusinessTerm)

Appendix F specifies normative information on the specific annotation required for
each of the artifacts.

Example 7-8 provides an example of annotation documentation for a BBIE that
conforms to the ccts structure.

Example 7-8: Example of Annotation Documentation

<xsd:annotation>
<xsd:documentation xml:lang="en">

<ccts:UniqueID>UNBEO00000 </ccts:UniqueID>
<ccts:VersionID>1.0</ccts:VersionID>
<ccts:SequencingKeyID>1</ccts:SequencingKeyID>
<ccts:CCTSArtifact>BBIE </ccts: CCTSArtifact>
<ccts:DictionaryEntryName>Account. Identifier</ccts:DictionaryEntryName>
<ccts:Definition> The identification of a specific account.</ccts:Definition>
<ccts:Cardinality>String</ccts:Cardinality >

XML Naming and Design Rules V3.0 1st Public Review Page 48 of 144

A
NINN NN
[02]02]e2]¢))]
N—O OO0

1263
1264

1265
1266

1267

R R WL WL VR R WL WL WL R K G WL (R K WU WL R R WU W WL WL R WK WU WL R R QR WL WL R (R WK WL WL W GHR WU WL R R QU WL WL WL WU WU W WL WL WK WHE G W G

O LIULILILILILILILILILILILILILILILIUILILILILILICILICINNINNNNNY
NNNNNDN A 2 00 OO OOOOOOOOODOODOOO 0000000000000 000000 NNNNNNNNNNOO)

1R UWN—=OO00NCYUI-RULWN OO 00N U1-RULWN =2 OO 00N UT1-RLWN ~2 OO0~ TR LN 2 OO 00~NDJTRLWN OO0

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<ccts:ObjectClassName>Account<ccts:ObjectClassName>
<ccts:PropertyTermName>Identifier<ccts:PropertyTermName>
<ccts:RepresentationTermName>Identifier</ccts:RepresentationTermName>
</xsd:documentation>
</xsd:annotation>

Each UN/CEFACT construct containing a code must include documentation that will
identify the code list(s) that must be supported when the construct is used.

Example 7-9 shows the XML Schema definition of annotation documentation for
each of the type of component.

Example 7-9: XML Schema definition of annotation documentation

<xsd:schema

xmlns:ccts="urn:un:unece:uncefact:documentation:common:3:standard:XMLNDRDocumentati
on"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:bdt="urn:un:unece:uncefact:data:common:3:standard:BusinessDataType”
targetNamespace="
urn:un:unece:uncefact:documentation:common: 3:standard:XMLNDRDocumentation"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:import namespace="
urn:un:unece:uncefact:data:common:3:standard:BusinessDataType"

schemalLocation="http://www.unece.org/uncefact/data/common/3/standard/BusinessDataTy
pe 3p0.xsd"/>
<xsd:group name="RootSchema Documentation">
<xsd:sequence>

</xsd:sequence>

</xsd:group>

<xsd:group name="ABIE Documentation">
<xsd:sequence>

</xsd:sequence>

</xsd:group>

<xsd:group name="BBIE Documentation">
<xsd:sequence>

</xsd:sequence>

</xsd:group>

<xsd:group name="ASBIE Documentation">
<xsd:sequence>

</xsd:sequence>

</xsd:group>

<xsd:group name="BDT Documentation">
<xsd:sequence>

</xsd:sequence>

</xsd:group>

<xsd:group name="BDT SC Documentation">
<xsd:sequence>

</xsd:sequence>

</xsd:group>

<xsd:group name="CodeList Documentation">
<xsd:sequence>

</xsd:sequence>

</xsd:group>

<xsd:group name="CodeValue Documentation">
<xsd:sequence>

</xsd:sequence>
</xsd:group>
<xsd:complexType name="UsageRuleType">
<xsd:sequence>
<xsd:element name="UniquelD" type="bdt:IDType" minOccurs="0"/>
<xsd:element name="Name" type="bdt:NameType" minOccurs="0"/>

XML Naming and Design Rules V3.0 1st Public Review Page 49 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

1326 <xsd:element name="Description" type="bdt: TextType"/>

1327 <xsd:element name="Constraint" type="bdt:TextType"/>

1328 <xsd:element name="ConstraintTypeCode" type="bdt:ConstraintTypeCodeType"
1329 minOccurs="0"/>

1330 <xsd:element name="ConditionTypeCode" type="bdt:ConditionTypeCodeType"
1 gg 1 minOccurs="0"/>

i 2 </xsd:sequence>

1 333 </xsd:complexType>

1334

1335 </xsd:schema>

1336 Table 7-1 provides a summary view of the annotation data as defined in this section.

Q S o
S - |E o
|>_< = % GCJ o L
2L 5| E|S S| 8
o g’ e % (g > = m)
=) Q| € © © 7]
O 3 | B |o |E= ®| 9
Cls s %2(Q |g Q| 2
3 Q (Q . 9_) E c et)
o L O o 8_ o S
p w w m (O 8 c O m
Elo a| 9|8 |55 8|3
e < m < |0 ov|lw & O o
Unique Identifier M M M M M
Dictionary Entry Name M M
Name M M
Version ldentifier M M M M M M M
Definition M M
Cardinality MM
Object Class Term Name M M M
Object Class Qualifier Term
Name 0 0 0
Property Term Name M M M
Property Qualifier Term Name
Associated Object Class Term
Name M
Associated Object Class
Qualifier Term Name
Association Type

XML Naming and Design Rules V3.0 1st Public Review Page 50 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Primary Representation Term

Name M M M

Data Type Qualifier Term

Name M

Primitive Type Name M M M M

U R I O’ O, O! O, O’ O’
sage Rule R R R R R R

: o, |0, |O, |0,

Business Term Name R R R R

E I O’ Oa O, Os Ol O! O’
xample R IR |[R |[R |[R |R |R

1337 Key: M —Mandatory O — Optional R —Repeating C — Conditional
1338 Table 7-1 Annotation Data Summary

1339 7.5.1.1 Usage Rules

1340 CCTS defines the concept of usage rules to convey instructions on how to use a
1341 CCTS artifact in a given context. These usage rules have a

1342 ccts:ConstraintType which classifies the rules as being structured (expressed
1343 in a formal language such as the Object Management Group’s Object Constraint
1344 Language (OCL)) or unstructured (free form text).

1345 | Note:

1346 | The UN/CEFACT TMG UCM project is defining the context mechanism that will
1347 | support refining usage rules in a given business circumstance. Once that
1348 | specification is finalized, this section may change.

1349 7.5.1.1.1 Structured Usage Rules

1350 Structured usage rules are suitable for direct application processing and will
1351 communicated as part of an XML Schema Component through the
1352 xsd:documentation element.

Usage rules whose ccts:ConstraintType is something other
than “unstructured” MUST be expressed within a
ccts:UsageRule element within an xsd:documentation
element.

[R 88DE]

The structure of the ccts:ConstraintType element MUST be:
e ccts:UniquelD [1..1]

[R B851] e ccts:Constraint [1..1]

e ccts:ConstraintType [1..1]

e ccts:ConditionType [1..1

XML Naming and Design Rules V3.0 1st Public Review Page 51 of 144

1353

1354
1355
1356

1357

1358
1359
1360
1361

1362
1363

1364
1365
1366
1367

1368
1369
1370
1371
1372

1373
1374
1375
1376
1377
1378
1379
1380

1381
1382
1383

1384

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

e ccts:Name [0..1]

e ccts:BusinessTerm [0..*]

7.5.1.1.2 Unstructured Usage Rules

Unstructured usage rules are not suitable for direct application processing and will
communicated as part of an XML Schema Component through the
xsd:documentation element.

Usage rules whose ccts:ConstraintType is unstructured
[R A1CF] | MUST be expressed within a ccts:UsageRule element within an | 1
xsd:documentation element.

7.5.2 Application Information (Applinfo)

The annotation xsd:appInfo will be used to convey the context specified that is
applicable for all BIE artifacts and the resulting XML Schema Components used to
express them. All context categories will be expressed using the CCTS context
category structures that are defined as shown in Example 7-10.

All elements specified within an xsd: appInfo element will be expressions of CCTS
context categories.

As identified in section 7.1.4, a CCTS Metadata XML Schema File contains
definitions for all required CCTS metadata and contexts for CCTS artifacts used in
this technical specification. The CCTS Metadata XML Schema File is imported in all
Root, ABIE, Code List, and BDT schema which contain xsd: appInfo elements.

The following xsd: appInfo structures are defined and used as described in section
Error! Reference source not found. Error! Reference source not found. in type
definitions and element declarations. The BusinessContext defined within each
xsd:applnfo contains one or more ccts:ContextUnit which contains each of the
identified context categories recognized by CCTS.

e Business Process Context Category

e Business Process Role Context Category
e Supporting Role Context Category

¢ Industry Classification Context Category
e Product Classification Context Category
e Geopolitical Context Category

¢ Official Constraints Context Category

e System Capabilities Context Category

Example 7-10 shows the XML Schema definition of annotation applinfo structures
which start with BusinessContext that is to be applied for each of the XML Schema
Components element, complexType and simpleType.

Example 7-10: XML Schema definition of annotation appinfo

XML Naming and Design Rules V3.0 1st Public Review Page 52 of 144

D o e T T T o N N N N R D S e e G T I I T e e e e e e e e e e e e e e ey e o o g S SR OL OV G SN ISLIN NSNSV S0 SV SV SV)

QIINIQOIOI0I0IUT-E DS DD DA AN N AOOLWOWOIGIGIGWLWWNINNNNNNNNIN AR A A A A A A A A OO0 OO0 OO OO OO (OOOOOOOOOO0000000000
OOONOOTRLWN—-OWOOONOUT-RULWN OO OO U1-RGWN OO0~ U1-R LN OO0~ UTRWN = OO 00~ TR LN = O OO0~ U1-R LN OO 00~NOXOT

R R UL PR R VPR WL PR R R WU WL WOUR WL R L WOUR G WHR R R UK WL R QUL \OHR W VR W WL WU R VR UL R R R R R WU WL VR W R \UR R R WL WK W VR WL W G WL UK WL WK WS W R WHR GHIK WL WL R UK WU WL WL WL WU WL WL G 4

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<xsd:schema

xmlns:ccts="urn:un:unece:uncefact:documentation:common:3:standard:XMLNDRDocumentati
on"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:bdt="urn:un:unece:uncefact:data:common:3:standard:BusinessDataType”
targetNamespace="
urn:un:unece:uncefact:documentation:common:3:standard:XMLNDRDocumentation"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:import namespace="
urn:un:unece:uncefact:data:common:3:standard:BusinessDataType"

schemalLocation="http://www.unece.org/uncefact/data/common/3/standard/BusinessDataTy
pe 3p0.xsd"/>

<xsd:element name="BusinessContext">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ContextUnit" maxOccurs:
<xsd:complexType>
<xsd:sequence>
<xsd:element
ccts:BusinessProcessContextCategory Type" minOccurs="0"

"

'unbounded">

name="BusinessProcessContextCategory" type
maxOccurs="unbounded"/>
<xsd:element
name="BusinessProcessRoleContextCategory" type="ccts:BusinessProcessRoleContextCategoryType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element
name="SupportingRoleContextCategory" type="ccts:SupportingRoleContextCategoryType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element
name="IndustryClassificationContextCategory" type="ccts:IndustryClassificationContextCategoryType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element
name="ProductClassificationContextCategory" type="ccts:ProductClassificationContextCategoryType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="Geopolitical ContextCategory"
ccts:GeopoliticalContextCategory Type" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element
name="0OfficialConstraintsContextCategory" type="ccts:Official ConstraintsContextCategoryType" minOccurs="0"
maxOccurs="unbounded"/>

type=

<xsd:element
ccts:SystemCapabilitiesContextCategory Type" minOccurs="0"

"

name="SystemCapabilitiesContextCategory" type
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="bdt:EntityUniqueldentifierType"/>
<xsd:attribute name="versionID" type="bdt:VersionIdentifierType"/>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="BusinessInformationContextCategoryType">
<xsd:sequence>
<xsd:element name="BusinessInformationEntityID" type="bdt:IDType"
maxOccurs="unbounded"/>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="BusinessInformationEntityID"
type="bdt:IDType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="inAllContextsIndicator" type="xsd:boolean"/>
</xsd:complexType>
<xsd:complexType name="BusinessProcessContextCategory Type">
<xsd:sequence>
<xsd:element name="BusinessProcessCode" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="bdt:CodeType"/>
</xsd:complexContent>
</xsd:complexType>

XML Naming and Design Rules V3.0 1st Public Review Page 53 of 144

O101I0I0INIOIGIQIOINIQIOINB A D A R MDA DA DMARARMRARARARNARNRARARNLALADALADRARALADALADADA DA RDNRARARNDRARADLN
COOGILIGLICININNININNNINNIN DA A2 a2 200000 OO OOOOOOOOLOOOOWO 000000000000 00COC0CONNNNNNNNNNOHOYHDMH YOO

R ON-=2OO00NOOT-RULWN2OWOONH TR LWN OO0 UT1RWN OO0 U1-RLWN OO 00N OT-RLWN 2 OO 00N OTRWN 2 OO OO OTRWN—-O

K R R U R PR L PR R R R WL WK WL R L \OUR R WOR L WL (UK WL WK WL R N WL UK WL WU WL VPR WL WL WU R R R WU WL VR U R R R WU WL WK WU VUK WL R WU WL UK WL (UK WL R QUL WL W R WK WL WU WL WL G WL G WL G G 4

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

</xsd:element>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="BusinessProcessTypeCode"
type="bdt:CodeType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name
</xsd:complexType>
<xsd:complexType name="BusinessProcessRoleContextCategoryType">
<xsd:sequence>
<xsd:element name="BusinessProcessRoleCode" type="bdt:CodeType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="PartyFunctionCode" type="bdt:CodeType"

—n

inAllContextsIndicator" type

'xsd:boolean"/>

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="inAllContextsIndicator" type="xsd:boolean"/>
</xsd:complexType>
<xsd:complexType name="SupportingRoleContextCategoryType">
<xsd:sequence>
<xsd:element name="SupporterFunctionCode" minOccurs="0" maxOccurs
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="bdt:CodeType"/>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SupporterFunctionCode"

_n

'unbounded">

type="bdt:CodeType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name
</xsd:complexType>
<xsd:complexType name="IndustryClassificationContextCategory Type">
<xsd:sequence>
<xsd:element name="IndustryClassificationCode" type="bdt:CodeType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="IndustryTypeCode" type="bdt:CodeType"

—n

inAllContextsIndicator" type

'xsd:boolean"/>

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="inAllContextsIndicator" type="xsd:boolean"/>
</xsd:complexType>
<xsd:complexType name="ProductClassificationContextCategory Type">
<xsd:sequence>
<xsd:element name="ProductClassificationCode" type="bdt:CodeType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ProductTypeCode" type="bdt:CodeType"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>

XML Naming and Design Rules V3.0 1st Public Review Page 54 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<xsd:attribute name="inAllContextsIndicator" type="xsd:boolean"/>
</xsd:complexType>
<xsd:complexType name="GeopoliticalContextCategoryType">
<xsd:sequence>
<xsd:element name="GeopoliticalCode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="clm54217:CurrencyCode"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="inAllContextsIndicator" type="xsd:boolean"/>
</xsd:complexType>
<xsd:complexType name="Official ConstraintsContextCategoryType">
<xsd:sequence>
<xsd:element name="OfficialConstraintsCode" minOccurs="0" maxOccurs
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="bdt:CodeType"/>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="LawTypeCode" type="bdt:CodeType"

—n

'unbounded">

maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="inAllContextsListIndicator" type="xsd:boolean"/>
</xsd:complexType>
<xsd:complexType name="SystemCapabilitiesContextCategoryType">
<xsd:sequence>
<xsd:element name="SystemCapabilitiesID" type="bdt:IDType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="ContextExclusion" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SoftwareSolutionID" type="bdt:IDType"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name
</xsd:complexType>
</xsd:schema>

—n

inAllContextsIndicator" type

'xsd:boolean"/>

QIO1IOINIOIOINIOICIOT10TIOIOTICIOIOTIOINIOINIOTIIJIOTINIIOINIOIINIOININTIOINIOINITIOINITTITIIIINOIOIO010101
000000C000COQONNNNNNNNNNOOHOOY DY) NIONOINIOINIOICI0INT-E B A B A AN MR ROWOWOWWW
OXUTRWNI—2OWOOO~NOYUT-RULWNI2OWO00NOYTT-RULWNI OO 00N OTRWN =2 OO0 UT1RWN =~ OWOO0O~NoO1

—
a
o
N

Using this structure it is possible to indicate all of the context categories in which a
1588 BIE is applicable.

1589 Example 7-11 shows a generic example of using the structures for applinfo to
1590 communicate the context categories in which a given element is applicable.

1591 Example 7-11 Use of the xsd: appInfo Business Context

<xsd:element name="<name>" type="<type>">
<xsd:annotation>
(documentation)
<xsd:appinfo source="urn:un:unece:uncefact:businesscontext...">
<ccts:BusinessContext>
<ccts:ContextUnit>
<ccts:BusinessProcessContextCategory>

<ccts:BusinessTransactionDocumentCode>0062
</ccts:BusinessTransactionDocumentCode>
<!-- PurchasingContractUseRequest -->
<ccts:BusinessTransactionDocumentCode>0081

XML Naming and Design Rules V3.0 1st Public Review Page 55 of 144

OO NIOINUININIOIN
OOOOOOOOOO©O
N—=OOO~NOOTRWN

OICTITYITHITITITITITHITITITYTHITHITITITIHIHITIITIHIDTITIDO)

COCILLLINININININNNNNN DA A 0000000
R ULWN—-2OO00~NCUI-RULWN OO0~ UI-RULWN 2 OWO0ONOOI-RW

LNGR E WHK WL WL R R R WL WL R R W W WL R R W WL VR VR WU WL WL R WU W W WL WL W

N
(@)
w
(&)

1636
1637
1638

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

</ccts:BusinessTransactionDocumentCode>

<!-- CataloguePublicationRequest -->

. (further business transaction document codes) ...
</ccts:BusinessProcessContextCategory>
<ccts:IndustryClassificationContextCategory>

<ccts:IndustryClassificationCode>0001

</ccts:IndustryClassificationCode>

<!-- Aerospace -->

<ccts:IndustryClassificationCode>0002

</ccts:IndustryClassificationCode>

<!-- Defence -->

<ccts:IndustryClassificationCode>0006

</ccts:IndustryClassificationCode><!— CP -->

. (further business transaction document codes) ...
</ccts:IndustryClassificationContextCategory>
<ccts:GeopoliticalContextCategory>

<ccts:CountryCode>DE</ccts:CountryCode>

<!-- Germany -->
<ccts:CountryCode>FR</ccts:CountryCode>
<!-- France -->
<ccts:CountryCode>US</ccts:CountryCode>
<!-- USA -->
<ccts:CountryCode>AT</ccts:CountryCode>
<!-- Austria -->

. (further business transaction document codes) ...
</ccts:GeopoliticalContextCategory>
. (further business context categories) ...
<ccts:ContextUnit>
</ccts:BusinessContext>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

Note:

The UN/CEFACT TMG UCM project is defining the context mechanism that will
support refining context categories in a given business circumstance. Once that
specification is finalized, this section may change.

XML Naming and Design Rules V3.0 1st Public Review Page 56 of 144

1639

1640
1641
1642
1643
1644
1645
1646

1647

1648
1649

1650
1651
1652

1653
1654

1655
1656

1657
1658
1659

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

8 Application of Context in Namespace

As indicated in 5.7 XML Schema Files the XML Schema files have dependencies upon
one another. Figure 8-1 further shows these dependencies and shows how these
dependencies are realized using xsd: include and xsd: import. Furthermore one
of the context categories are implemented within the namespace scheme all of the
XML Schema files for the given value of that context category are defined within the
corresponding namespace. The XML Schema files for other values of the context
category are defined in namespaces corresponding to those values.

[Note]

It is important to note here again that UN/CEFACT has chosen to implement the
Business Process context category in the namespace.

Figure 8-1 shows two context category values “A” and “B.” These namespace are
independently declared and may not have any shared dependencies other than to
common Code Lists that are themselves independent of context.

Context Category A Context Category B
Root XML Schema Root XML Schema
File File
T T
include m include (elige
BIE XML Schema BIE XML Schema
File File
/nclude /nclude
BDT XML Schema BDT XML Schema
File File
import
1 1
Restricted Code Restricted Code
List XML Schema List XML Schema
File File
import :mpo |mport

\

\ v Y \/ |
Code List XML Code List XML
Schema File O O O Schema File
Common Code List Common Code List
Namespace 1 Namespace N

Figure 8-1: Imports and Includes of XML Schema Files for UN/CEFACT
Modularity Model

All XML Schemas published by UN/CEFACT will be assigned to a unique
namespace and token by ATG that represents business process context category in
which it is designed.

XML Naming and Design Rules V3.0 1st Public Review Page 57 of 144

1660
1661

1662

1663

1664
1665

1666
1667

—— e e
DOODD
NNOD
N—=0OO®0

1673

1674
1675

1676
1677
1678

1679
1680
1681
1682
1683
1684
1685

1686

1687
1688
1689
1690
1691

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

The Root XML Schema file MUST be assigned to a unique
[R B96F] | namespace token that represents the context category value it is 1
intended.

Example 8-1 is an example of a namespace for the context category business
process value Order Management.

Example 8-1: Namespace for Context Category Business Process — Order Management

"xmlns:ordman="urn:un:unece:uncefact:oredermanagement:data:draft:1"

Example 8-2 shows how a given XML Schema file is declared to be within the
context category business process value Order Management.

Example 8-2: Schema-Element of an XML Schema File within the Context Category Business
Process Value — Order Management

<xsd:schema
targetNamespace=
"urn:un:unece:uncefact:ordermangement:data:1l:draft"
xmlns:ordman=
"urn:un:unece:uncefact:ordermanagement:data:1l:draft"

[Note]

Implementations of this specification require the implementation to use a namespace
prefix like ordman for the Business Process — Order Management

This section further describes the requirements of the application of context in the
namespace of the various XML Schema files that are incorporated within the
UN/CEFACT library.

e Root XML Schema Files
e Business Information Entities XML Schema File
e Business Data Type XML Schema File
e Code List XML Schema Files
o General Code List Contructs
o Restricted Code List XML Schema Files
o Common Code List XML Schema Files

8.1 Root XML Schema Files

The Root XML Schema file serves as the container for all schema defined content
that is required to fulfill a business information exchange for the given business
information payload for the context category expressed in the namespace. All of the
Root XML Schema files that are necessary to fulfill the context category are defined
within the namespace that is defined by that context category value.

XML Naming and Design Rules V3.0 1st Public Review Page 58 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

1692 Figure 8-1 shows multiple Root XML Schema files defined in the two context
1693 category based namespaces. The number of Root XML Schema files for a given
1694 context category may be 1 or more.

1695 8.1.1 XML Schema Structure

1696 Each Root XML Schema file will be structured in a standardized format in order to
1697 ensure consistency and ease of use. The specific format is shown in Example 8-3.
1698 The Root XML Schema file must adhere to the format of the relevant sections as
1699 detailed in Appendix B.

1700 Example 8-3: Structure of Root XML Schema File

1701 <?xml version="1.0" encoding="UTF-8"?>

1702 @ll— =

1703 <l-- ==——— [MODULENAME] XML Schema File —_— s

1704 @ll=— =5

1705 &ll==

1706 Schema agency: UN/CEFACT

1707 Schema version: 3.0

1708 Schema date: 15 July 2008

1709

:;:(1) Copyright (C) UN/CEFACT (2008). All Rights Reserved.

’ 7’ 2 . see copyright information ...

1713 =

’ 7’ 4 <xsd:schema

: 7: 5 targetNamespace="urn:un:unece:uncefact:data:ordermanagement:3:draft"

4 6 . see namespaces ...

: 7: 7 xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

) ;’ 8 elementFormDefault="qualified" attributeFormDefault="unqualified" version="3.0">
Zl== -—>

i 728 <l-- ===== TImports ===== —-->

1721 €= —s

1722 <l-— ===== Import of [MODULENAME] === ——>

1723 €= —s

1 724 < see imports

1 728 @ll== =

1 72 <!-- ===== 1Include ===== —->

1727 @ll== =

1728 <l-— ===== Include of [MODULENAME] === ——>

1729 €l== ==

’ 730 . see includes ...

1731 <l=—= ==

’ 732 <!-- ===== Element Declarations ===== ——>

1733 €l== ==

’ 734 <!-- ===== Root Element Declarations ===== —->

1735 €l== ==

’ 736 See element declarations..

1737 2= =

’ 738 <!-- ===== Type Definitions ===== -->

1739 2= =

1 740 <!-- ===== Type Definitions: [TYPE] ===== —=>

1741 2= =

iy 742 <xsd:complexType name="[TYPENAME] ">

i 743 <xsd:restriction base="xsd:token">

’ 744 . see type definition

1745 </xsd:restriction>

1746 </xsd:complexType>

1747 </xsd:schema>

1748 8.1.2 Includes

1749 As shown in Figure 8-1 within the namespace for context category one or more Root
1750 XML Schema files will include the BIE XML Schema file and the BDT XML Schema
1751 file that reside in the same namespace.

XML Naming and Design Rules V3.0 1st Public Review Page 59 of 144

1752
1753
1754
1755
1756
1757

1758

1759
1760
1761
1762

R W VK W W G W
NN
~N~ N
N—=OO00~NOON

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

XML Schema files in one context category specific namespace must not import XML
Schema file in another context specific namespace. Since the contexts of these
namespaces are not dependent upon neither should the XML Schema files be
dependent upon one another. If however the a valid context can be defined such that
the context applies to all of the Root Schemas these XML Schema file must share
BIE and BDT XML Schema files.

The Root XML Schema file MUST include the XML Schema files
that are in the same namespace as the Root XML Schema file :

[R B698] e BIE XML Schema file 1

e BDT XML Schema file

A Root Schema in one namespace that is dependent upon type
[R ACBD] | definitions or element declarations defined in another namespace | 1
MUST NOT import XML Schema Files from that namespace.

8.1.3 Root Element Declaration

Each UN/CEFACT business information payload message has a single root element
that is globally declared in the Root XML Schema File. The global element is named
according to the business information payload that it represents and references the
target information payload that contains the actual business information.*

A global element known as the root element, representing the
[R BD9F] | business information payload, MUST be declared in the Root XML | 1
Schema File.

The name of the root element MUST be the name of the business
[R A466] | . . .
information payload with separators and spaces removed.

The root element declaration MUST be defined using
[R 8062] xsd: complexType that represents the definition of the business | 1
information payload.

Example 8-4 shows an example declaration of a Root Element.

Example 8-4: Declaration of Root Element

<[== ==>
<!-- ===== Root Element ===== -->
<[== ==>

<xsd:element name="Invoice" type="rsm:InvoiceType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
</xsd:element>

* All references to root element represent the globally declared element in a UN/CEFACT schema module that is
designated as the root element for instances that use that schema.

XML Naming and Design Rules V3.0 1st Public Review Page 60 of 144

1773

1774
1775

1776
1777

SININININININININININNN
(O0000000000000C0C000~IN
SORDTIRLNISKO0

1791

1792
1793
1794
1795
1796
1797

1798
1799

1800
1801
1802
1803
1804

1805
1806
1807
1808
1809

1810
1811

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

8.1.4 Type Definitions

Root schemas are limited to defining a single xsd: complexType and a declaring a
single global element that fully describe the business information payload.

R 8837] Each Root XML Schema File MUST define a xsd: complexType 1
that fully describes the business information payload.

R 9119 The name of the root schema xsd: complexType MUST be the 1

[] name of the root element with the word ‘Type’ appended.

Example 8-5 shows the definition of a complex type.

Example 8-5: Name of Complex Type Definition

<ll== ==>
<!-- ===== Root Element ===== -->
<ll== ==>

<xsd:element name="Invoice" type="rsm:InvoiceType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
</xsd:element>
<xsd:complexType name="InvoiceType">
<xsd:sequence>

</xsd:sequence>
</xsd:complexType>

8.1.5 Declaration of the Referencing Constraints

Referencing between ABIEs occur in the boundaries of a particular ‘scoping’ element
in the XML document tree (scoping element means an element in the hierarchy of
the XML document under which a closed set of references can be defined). Most
often the scoping element will be the message root element but it can also be
another element lower in the hierarchy. The schema language requires that the
identity constraints be defined within that scoping element.

The following principles are taken into account for the implementation of key-keyref
constraints:

e For maximum element and type reuse and to stay away from forward
compatibility problems, attributes used as identifiers or references are
optional. This means that no xsd: key constraints should be defined on
identifiers, which would make the identifiers mandatory in the context of a
message; only xsd:unique constraints should be used.

¢ Only the ABIEs that are part of a logical aggregation implemented by XML
referencing will be subject to explicit schema identity constraints. For all other
ABIEs - which may only be involved in dynamic references - uniqueness of
identifiers should be granted by use of adequate algorithms for the generation
of the identifiers.

The identifier attribute of each ABIE that is part of a logical aggregation implemented
by XML referencing will be subject to a xsd:unique constraint defined in the

XML Naming and Design Rules V3.0 1st Public Review Page 61 of 144

1812
1813

1814
1815
1816

1817

—_—
00000000
NN

—OW00

1822
1823
1824

1825
1826
1827
1828

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

constraint scoping element. The name of the xsd: unique constraint must be
unique in the schema.

For each referenced ABIE element one xsd:unique constraint
[R BA43] | involving the identifier attribute of the referenced element MUST 1
be declared in the schema, under the scoping element.

The name of the xsd:unique constraint MUST be composed as
follows:

“<Scoping Element Name Text><Referenced Element
Name Text>Key’

So that the name is unique in the schema. This declaration will

guarantee uniqueness of the identifier attribute values across all
[R B40C] | referenced elements of the same name, in the given scope. 1

Where:

e Scoping Element Name Text — is the element name within
XML document hierarchy which a closed set of reference is
defined.

e Referenced Element Name Text — is the element name

within the scoping element being referenced.

In Example 8-6 the declaration under the message root element will guarantee
uniqueness of the @key attribute values across all ram: Party elements, in the
scope of the rsm:ClaimNotify message.

Example 8-6: Unique Declaration

<xsd:unique name="ClaimNotifyPartyKey">
<xsd:selector xpath="ram:Party"/>
<xsd:field xpath="@key"/>
</xsd:unique>

Note: The value of xsd: selector/@xpath identifies instances of one element in
one namespace (by default the root namespace). Referenced elements defined in
the data namespace need to wear the proper namespace prefix.

For each referenced ABIE used in a given scope within the message, a
xsd:keyRef declaration must be made. Since the schema will specify which parent
element can contain the reference attribute, there MUST be only one xsd:keyRef
declaration for all the instances where the reference attribute appears.

For each referenced element in a given scope one xsd:keyref
[R AC2D] constraint involving the reference attribute that point to the 1

referenced element MUST be declared in the XML Schema, under
the scoping element.

Since the XML Schema will specify which parent element can
[R9BE8] | contain the reference attribute, there MUST only be one 1
xsd:keyref constraint declared for all the elements where the

XML Naming and Design Rules V3.0 1st Public Review Page 62 of 144

1843
1844

1845
1846

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

reference attribute may occur.

The name of the xsd:keyref constraint MUST conventionally be
composed as follows:

“<Scoping Element Name Text><Reference Attribute
Name Text>”

[R8sgp] | SO that the name is unique in the schema where: 1

e Scoping Element Name Text — is the element name within
XML document hierarchy which a closed set of reference is
defined.

¢ Reference Attribute Name Text — is the element name

within the scoping element being referenced.

In Example 8-7 the declaration under the message root element will enforce
referencing between all the elements that have the @PartyReference attribute
and instances of ram:Party, in the scope of the rsm:ClaimNotify message.

Example 8-7: Key Reference Declaration

<xsd:keyref name="ClaimNotifyPartyReference" refer="ClaimNotifyPartyKey">
<xsd:selector xpath=".//*"/>
<xsd:field xpath="@partyReference"/>

</xsd:keyref>

Note:

The value of xsd: selector/@xpath allows for any element in any namespace to
be the parent element of the reference attribute in the xsd: keyref constraint.

Dynamic referencing does not require the schema to enforce uniqueness of @key
attributes when they are not involved in structural referencing. This will avoid
unnecessary complexity of the identity constraints.

Uniqueness of Rkey attributes that are not involved in structural
referencing MUST NOT be enforced by the schema via identity
[R 886A] | constraints. Uniqueness of @key attributes should be assured by 1
use of adequate algorithms for the generation of the identifiers
(e.g. UUIDs).

8.1.6 Annotations
8.1.6.1 Annotation Documentation

In the Root XML Schema File the root element declaration must have a structured
set of annotation documentation.

The Root XML Schema File root element declaration MUST have a
structured set of annotations documentation present in that

[R 8010] includes:

¢ UniquelD (mandatory): The identifier that references the

XML Naming and Design Rules V3.0 1st Public Review Page 63 of 144

1847
1848

000000 00000000000000000000
O OXIINIQINUINIOIOOT
—~OO00NOUTRWN—-OW©

—
o
[©)]
N

1863
1864
1865
1866

1867

1868
1869
1870
1871

1872

1873
1874
1875
1876

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

business information payload instance in a unique and
unambiguous way.

e VersionlD (mandatory): The identifier that reference the
version of the business information payload instance.

o CCTSArtifact (mandatory): The code of the type of
component. In this case the value will always be RSM.

¢ Name (mandatory): The name of the business information
payload.

o Definition (mandatory): A brief description of the business
information payload.

e BusinessTermName (mandatory): The business term name
that the payload object is known by.

Example 8-8 shows the definition of the annotation documentation.

Example 8-8: The annotation documentation definition for the root element documentation.

<xsd:group name="RootSchemaDocumentation">
<xsd:sequence>
<xsd:element name="UniqueID"
type="bdt:EntityUniqueIdentifierType" />
<xsd:element name="VersionID" type="bdt:VersionIdentifierType"/>
<xsd:element name="CCTSArtifact"
type="bdt :DocumentationCCTSArtifactType" fixed="RootSchema"/>
<xsd:element name="Name" type="bdt:NameType"/>
<xsd:element name="Definition" type="bdt:TextType"/>
<xsd:element name="BusinessTermName" type="bdt:NameType"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:group>

8.1.6.2 Annotation Application Information (Appinfo)

The annotation xsd:appInfo on the Root Element is used to convey the context
that is applicable for the Root Element. The structure of the context is provided in
section 7.5.2, Application Information (ApplInfo). All contexts in which the Root
Element is applicable is expressed here.

8.2 Business Information Entities XML Schema Files

A UN/CEFACT BIE XML Schema file is a XML Schema definition that contains all of
the reusable ABIEs for the context category that is reflected in the namespace. This
XML Schema file will be used (included into) in all of the UN/CEFACT Root XML
Schema Files for the context category in which it is defined.

8.2.1 Schema Structure
Each BIE XML Schema file will be structured in a standardized format in order to
ensure consistency and ease of use. The specific format is shown in Example 8-9

below and must adhere to the format of the relevant sections as detailed in Appendix
B.

XML Naming and Design Rules V3.0 1st Public Review Page 64 of 144

—
©
~
~

R R WK WL WL WURR WHR WL WL VR W R WK W WL WL W {

OO OO0000000C0 00000000 0000 0000C0C00000000000000000
OOOOOOOOOOLODOOO 0000000 000000000000~
B ON-2SO0ONOTTR LN OO0~ UIRLWN—-OW000

-
©
o
(&)

1906
1907

1908

N
©
o
©

DOROOOOQ

RN

CO~NOUIRWN—-O

N
©
=
©

1920
1921
1922
1923
1924

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Example 8-9: Structure of BIE XML Schema Files

<?xml version="1.0" encoding="UTF-8"?>

<ll== ===
<l-- ===== ABIEs XML Schema File ===== —->
<!-- ==>
l==

Schema agency: UN/CEFACT

Schema version: 3.0

Schema date: 15 July 2008

Copyright (C) UN/CEFACT (2008). All Rights Reserved.

. see copyright information ...
-—>
<xsd:schema
targetNamespace=
. see namespace declaration ...
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<[== ==3

<l-- ===== Impor ===== —->

<l-= -—>
. see imports

<l-= -—>

<!-- ===== Type Definitions ===== —-->

<l—= === =—== ——>

. see type defintions ...
</xsd:schema>

8.2.2 Includes

The BIE XML Schema file will include the corresponding BDT XML Schema file that
resides in the same namespace.

The Business Information Entity XML Schema file MUST include
[R 8FE2] | the Business Data Type XML Schema File that resides in the same | 1
namespace.

Example 8-10 shows the syntax for including the BDT XML Schema file.

Example 8-10: Import of required modules

SIS =———=nciludes ===== -->
<l-= -——>
<!-- ===== Include of Business Data Type XML Schema File ===== ——>
<l-= -——>

<xsd:include
schemaLocation="http://www.unece.org/uncefact/data/ordermanagement/3/draft/Busine
ssDataType 1p0.xsd"/>
xsd" />

8.2.3 Type Definitions

For every complex type definition based on an ABIE object class, its XSD content
model will be defined such that it reflects each property of the object class as an
element declaration, with its cardinality and sequencing within the XML Schema
content model determined by the details of the source business information entity
(ABIE).

XML Naming and Design Rules V3.0 1st Public Review Page 65 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

For every object class (ABIE) identified in the corresponding
[R AF95] | syntax-neutral model, a named xsd: complexType MUST be 1
defined.

The name of the ABIE xsd: complexType MUST be the
ccts:DictionaryEntryName: with the spaces and separators

[R 9D83] removed, approved abbreviations and acronyms applied and with 1
the ‘Details’ suffix replaced with ‘Type’.
Every aggregate business information entity (ABIE)
xsd: complexType definition content model MUST use zero or
[R9C70] . 1
more xsd: sequence and/or zero or more xsd: choice elements
to reflect each property (BBIE or ASBIE) of its class.
[R 81F0] Repeating series of only xsd: sequence MUST NOT occur. 1
[R 8FA2] | Repeating series of only xsd:choice MUST NOT occur. 1

The order and cardinality of the elements within an ABIE
[R90F9] | xsd:complexType MUST be according to the structure of the 1
ABIE as defined in the model.

1925 No complex type may contain a sequence followed by another sequence or a choice
1926 followed by another choice, as show in Example 8-11 and Example 8-12. However, it
1927 is permissible to alternate sequence and choice as in Example 8-13.

1928 Example 8-11: Sequence within an object class

<xsd:complexType name="AccountType" >
<xsd:annotation>
...see annotation...
</xsd:annotation>
<xsd:sequence>
<xsd:element name="ID" type="bdt:IDType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
...see annotation...
</xsd:annotation>
</xsd:element>
<xsd:element name="Status" type="ram:StatusType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
...see annotation...
</xsd:annotation>
</xsd:element>
<xsd:element name="Name" type="bdt:NameType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
...see annotation...
</xsd:annotation>
</xsd:element>

COOLOLOLOLOLOLOLOLOLOLOLOLOLOLOLO(OLOLOLOOLOOOO

QIOI0I0INI-B AR DS DN NN GIGWOLWOIGILUILWLWLWN
R OLN—-2OO0ONUTRULWNI—OWO0ONOYUI-RWN—-OWO

</xsd:sequence>
</xsd:complexType>

1955 Example 8-12: Choice

1956 <xsd:complexType name="LocationType">

XML Naming and Design Rules V3.0 1st Public Review Page 66 of 144

LOOOOOOOOOLOLODDDODOOLOOODOOO
CONNNNNNNNNNOHIODOH YOOI
OO0 OTRLWNI OO0 WNI—~OWO00N

-
o
oo
e

OOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOIOOLODODOOOIOOOOO©
NNNNNNIN LA A2 OO0 OO0 OOOO(OOOOOOOOOO 0000000000000000

OOOTRLWNI2OOCONTTRLWNI OO 0N TR LWNI2OO00~NOYTTR LN OO0~ TR WN

NININININININININININININININNNNNININDNININDIDDN A s A A aa A a A

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<xsd:annotation>
see annotation ...
</xsd:annotation>
<xsd:choice>
<xsd:element name="GeoCoordinate" type="ram:GeoCoordinateType"
minOccurs="0">
<xsd:annotation>
see annotation ...
</xsd:annotation>
</xsd:element>
<xsd:element name="Address" type="ram:AddressType"
minOccurs="0">
<xsd:annotation>
see annotation ...
</xsd:annotation>
</xsd:element>
<xsd:element name="Location" type="ram:LocationType"
minOccurs="0">
<xsd:annotation>
see annotation ...
</xsd:annotation>
</xsd:element>
</xsd:choice>
</xsd:complexType>

Example 8-13: Sequence + Choice within Object Class "PeriodType"

<xsd:complexType name="PeriodType">

<xsd:sequence>
<xsd:element name="DurationDateTime"
type="qdt:DurationDateTimeType" minOccurs="0"
maxOccurs="unbounded">

</xsd:element>

<xsd:choice>
<xsd:sequence>
<xsd:element name="StartTime" type="bdt:TimeType"
minOccurs="0">

</xsd:element>
<xsd:element name="EndTime" type="bdt:TimeType"
minOccurs="0">

</xsd:element>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="StartDate" type="bdt:DateType"
minOccurs="0">

</xsd:element>
<xsd:element name="EndDate" type="bdt:DateType"
minOccurs="0">

</xsd:element>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="StartDateTime"
type="bdt:DateTimeType"
minOccurs="0">

</xsd:element>
<xsd:element name="EndDateTime"
type="bdt:DateTimeType"
minOccurs="0">

</xsd:element>
</xsd:sequence>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

XML Naming and Design Rules V3.0 1st Public Review Page 67 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

2027 One technical identifier per aggregate kind (both shared and composite) will be used
2028 for both generic and structural referencing. It will be defined as an optional attribute
2029 named “key” to avoid any confusion with legacy XML ID attributes.

Every aggregate business information entity (ABIE)

xsd: complexType definition MUST contain an optional “key”
attribute that MAY be used as the complex element identifier in a
message instance.

[R 8EA2]

The “key” attribute MUST be locally define on the ABIE
[R92C0] | xsd:complexType definition. “key” MUST be a reserved 1
attribute name.

[R 8A37] | Every “key” local attribute MUST be of the type xsd: token. 1

2030 8.2.4 Element Declarations and References
2031 8.2.4.1 ABIE Elements

2032 The content model of the ABIE complex type definitions will include both element
2033 declarations for BBIEs and ASBIEs. The BBIEs will always be declared locally. The
2034 rules for declaration of ASBIE’s are exposed in the next section.

2035 Every ABIE must have a globally declared element. This global element reflects the
2036 unique DEN of the ABIE within the namespace to which it is assigned.

2037 | Note:

2038 | This rule applies even to ABIE’s used in associations where the ASBIE
2039 | AggregationKind is composition, resulting in a local element being used by the
2040 | containing ABIE, as exposed in the next section.

For each ABIE, a named xsd:element MUST be globally

[R 9DAD] declared. 1
The name of the ABIE xsd:element MUST be the

[R 9A25] ccts:DictionaryEntryName with the separators and 1
‘Details’ suffix removed and approved abbreviations and
acronyms applied.

[R B278B] Every ABIE global element declaration MUST be of the 1

xsd: complexType that represents the ABIE.

For every attribute of an object class (BBIE) identified in an ABIE,
[R 89A6] | anamed xsd:element MUST be locally declared within the 1
xsd: complexType representing that ABIE.

Each BBIE element name declaration MUST be the property term
[R AEFE] | and qualifiers and the representation term of the basic business 1
information entity (BBIE).

XML Naming and Design Rules V3.0 1st Public Review Page 68 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Each BBIE element name declaration where the word
‘identification’is the final word of the property term and the
representation term is ‘identifier’, the term
‘identification’ MUST be removed.

[R96D9]

Each BBIE element name declaration where the word
‘indication’is the final word of the property term and the
representation term is ‘indicator’, the term ‘indication’
MUST be removed from the property term.

[R 9A40]

If the representation term of a BBIE is ‘text’, ‘text’ MUST be

[RA34A] removed from the name of the element or type definition.

2041 8.2.4.2 ASBIE Elements

2042 The ASBIEs whose ccts:AggregationKind is Composition will always be
2043 declared locally.

For every ASBIE whose ccts:AggregationKind is a

[R9025] composition, a named xsd:element MUST be locally declared.

For each locally declared ASBIE, the element name MUST be the
[R AOBA] | ASBIE property term and qualifier term(s) and the object class 1
term and qualifier term(s) of the associated ABIE.

For each locally declared ASBIE, the element declaration MUST

[RB27C] use the xsd: complexType that represents its associated ABIE.

2044 For each ASBIE who'’s ccts :AggregationKind is not an AggregateKind
2045 composite, there are two mutually exclusive cases, one of which needs to be
2046 selected on the base of the applicable Message Assembly definition.

2047 e The globally declared element for the associated ABIE is included in the
2048 content model of the parent ABIE as a nested complex property.
2049 ¢ An equivalent referencing element pointing to the associated ABIE is included
2050 in the content model of the parent ABIE.
For every ASBIE whose AggregationKind is shared, where the
R 9241] association is implemented as a nested property, the globally 1
declared element for the associated ABIE MUST be referenced
using xsd: ref.
Every ASBIE whose AggregationKind is not a composition, and
where the association must be implemented as a referenced
[R B78E] . . . 1
property, an equivalent referencing element pointing to the
associated ABIE MUST be locally declared.
[R AEDD] The equivalent referencing element MUST have a name 1
composed of the ASBIE property term and property qualifier

XML Naming and Design Rules V3.0 1st Public Review Page 69 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

term(s).

For each equivalent referencing element a xsd: complexType
[RB173] | MUST be declared. Its structure will be an empty element with a
local attribute.

The name of the local attribute that is part of the empty element
MUST be composed of the object class term and object qualifier
term(s) of the ABIE being referenced, followed by the suffix
‘Reference’.

[R B523]

The name of the xsd: complexType representing the equivalent
[R 8BOE] referencing element MUST be composed of the object class term

and object qualifier term(s) of the ABIE being referenced, followed
by the suffix ‘ReferenceType’.

Each equivalent referencing element MUST be of the

[R B7D6] xsd: complexType that relates to the ABIE being referenced.

2051 Example 8-14 shows an ABIE type definition with a local element declaration for a
2052 BBIE (“ID”), a local element declaration for two ASBIEs (“SellerParty” and

2053 “BuyerParty”) and a global element reference for the Invoice specific ABIE

2054 (“InvoiceTradeLineltem”).

Example 8-14: Element declaration and reference within an ABIE type definition

N
o
[$)]
(@)

<xsd:complexType name="InvoiceType">
<xsd:sequence>
<xsd:element name="ID" type="bdt:IDType"/>
<xsd:element name="SellerParty" type="ordman:SellerPartyType"/>
<xsd:element name="BuyerParty" type="ordman:BuyerPartyType"/>
<xsd:element ref="ordman:InvoiceTradeLineItem"
maxOccurs="unbounded" />
</xsd:sequence>

NININNNINNN
OO0
)OO UINIOIN
WNI=2OO00~NO

2064 Example 8-15 shows the schema definition of an ASBIE specified as a referencing
2065 element, building on example 5.11.

2066 Example 8-15: Element and type definition of an ASBIE, specified as a referencing element
2067 <xs:complexType name="PartyReferenceType">

2068 <xs:attribute name="partyReference" type="xs:token"/>

2069 </xs:complexType>

2070

2(T71 <xs:element name="ClaimantParty" type="PartyReferenceType"/>

2072 8.2.5 Annotation

2073 8.2.5.1 Annotation Documentation
2074 8.2.5.1.1 ABIE Complex Type Definition

2075 Every ABIE complexType definition must include a structured annotation
2076 documentation.

For every ABIE xsd: complexType definition a structured set of

[R ACB9] annotations MUST be present in the following pattern:

XML Naming and Design Rules V3.0 1st Public Review Page 70 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

¢ UniquelD (mandatory): The identifier that references an
ABIE instance in a unique and unambiguous way.

e VersionID (mandatory): An identifier of the evolution over
time of an ABIE instance.

e CCTSArtifact (mandatory): The code of the type of
component. In this case the value will always be ABIE.

e DictionaryEntryName (mandatory): The official name of an
ABIE.

¢ Definition (mandatory): The semantic meaning of an ABIE.

e ObjectClassName (mandatory): The Object Class Name of
the ABIE.

e UsageRule (optional, repetitive): Indicates the Usage Rule
of the Object.

Example 8-16 shows the annotation documentation of an ABIE definition.

Example 8-16: Annotation of an ABIE complexType Definition

<xsd:complexType name="AccountType" >
<xsd:annotation>
<xsd:documentation xml:lang="en-US">
<ccts:UniqueID>UNBE0O00000</ccts:UniqueID>
<ccts:VersionID>0.00</ccts:VersionID>
<ccts:CCTSArtifact>ABIE</ccts:CCTSArtifact>
<ccts:DictionaryEntryName>String</ccts:DictionaryEntryName>
<ccts:Definition>String</ccts:Definition>
<ccts:0ObjectClassName>String</ccts:0ObjectClassName>
<ccts:UsageRule>

</ccts:UsageRule>
</xsd:documentation>
</xsd:annotation>

NINIMNINININININNNINNNNNY
OOOOOOOOO0O0OOO00O
CODOO00000000000000000000~

WN—=OO0ONOHUI-RWN—-OW0

</xsd:complexType>

8.2.5.1.2 ABIE Element

Every ABIE element declaration must include structured annotation documentation.

[R 88B6]

For every ABIE xsd:element declaration definition, a structured
set of annotations MUST be present in the following pattern:

UniquelD (mandatory): The identifier that references an
ABIE instance in a unique and unambiguous way.

Version|D (mandatory): An identifier of the evolution over
time of an ABIE instance.

CCTSArtifact (mandatory): The abbreviation code of the
type of component. In this case the value will always be
ABIE.

DictionaryEntryName (mandatory): The official name of an
ABIE.

XML Naming and Design Rules V3.0 1st Public Review Page 71 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

¢ Definition (mandatory): The semantic meaning of an ABIE.

e ObjectClassName (mandatory): The Object Class Name of
the ABIE.

e UsageRule (optional, repetitive): Indicates the Usage Rule
of the Object.

2096 8.2.5.1.3 BBIE Element

2097 Every BBIE element declaration must include structured annotation documentation.

For every BBIE xsd:element declaration a structured set of
annotations MUST be present in the following pattern:

e UniquelD (mandatory): The identifier that references a BBIE
instance in a unique and unambiguous way.

e VersionID (mandatory): An indication of the evolution over
time of a BBIE instance.

e SequencingKeylD (mandatory): Identifier of the sequence of
the BBIE in the containing ABIE.

e CCTSArtifact (mandatory): The code of the type of
component. In this case the value will always be BBIE.

¢ DictionaryEntryName (mandatory): The official name of the
BBIE.

e Definition (mandatory): The semantic meaning of the BBIE.

e Cardinality (mandatory): Indication whether the BIE Property
represents a not-applicable, optional, mandatory and/or
[R B8BE] repetitive characteristic of the ABIE.

e ObjectClassQualifierName (optional): Qualifies the Object
Class Name of the parent ABIE.

¢ ObjectClassName (mandatory): The Object Class Name of
the parent ABIE.

e PropertyQualifierName (mandatory): Qualifies the Property
Term of the BBIE.

e PropertyTermName (mandatory): The Property Term Name
of the BBIE.

¢ RepresentationTermName (mandatory): Representation
term.

e UsageRule (optional, repetitive): Indicates the Usage Rule
of the Object.

e BusinessTermName (optional, repetitive): A synonym term
under which the BBIE is commonly known and used in the
business.

XML Naming and Design Rules V3.0 1st Public Review Page 72 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

e Example (optional, repetitive): Example of a possible value
of a BBIE.

2098 Example 8-17 shows the annotation documentation of a BBIE Element.

N
o
O
©

Example 8-17: Annotation of a BBIE Element

2: 00 <xsd:element name="ID" type="bdt:IDType" minOccurs="0" maxOccurs="unbounded">
2’ 81 <xsd:annotation>

2 2 <xsd:documentation xml:lang="en-US">

2: 83 <ccts:UniqueID>UNBE000000</ccts:UniqueID>

2’ 4 <ccts:VersionID>0.00</ccts:VersionID>

2’ 88 <ccts:SequencingKeyID>1</ccts:SequencingKeyID>

2’ <ccts:CCTSArtifact>BBIE</ccts:CCTSArtifact>

2’ 07 <ccts:DictionaryEntryName>String</ccts:DictionaryEntryName>

2’ 08 <ccts:Definition>String</ccts:Definition>

2’ 09 <ccts:Cardinality>String</ccts:Cardinality>

2’ 10 <ccts:0bjectClassName>String</ccts:0bjectClassName>

2’ 1 1 <ccts:PropertyTermName>String</ccts:PropertyTermName>

2 12 <ccts:RepresentationTermName>String</ccts:RepresentationTermName>
2’ 13 </xsd:documentation>

%: 1% </xsd:annotation>

2116 </xsd:element>

2117 8.2.5.1.4 ASBIE Element

2118 Every ASBIE element declaration must include structured annotation documentation.

For every ASBIE xsd:element declaration a structured set of
annotations MUST be present in the following pattern:

¢ UniquelD (mandatory): The identifier that references an
ASBIE instance in a unique and unambiguous way.

e VersionlD (mandatory): An indication of the evolution over
time of the ASBIE instance.

e SequencingKeylD (mandatory): Identifier of the sequence of
the ASBIE in the containing ABIE.

e CCTSArtifact (mandatory): The code of the type of
component. In this case the value will always be ASBIE.

[R 926A] e DictionaryEntryName (mandatory): The official name of the 1
ASBIE.

o Definition (mandatory): The semantic meaning of the
ASBIE.

e Cardinality (mandatory): Indication whether the ASBIE
Property represents a not-applicable, optional, mandatory
and/or repetitive characteristic of the ABIE.

¢ ObjectClassQualifierName (optional): A term that qualifies
the Object Class Name of the associating ABIE.

e UsageRule (optional, repetitive): Indicates the Usage Rule
of the Object.

XML Naming and Design Rules V3.0 1st Public Review Page 73 of 144

NONONININININININININININININININNNNNNNNNNN

D G ¢

AL DRG0 GIOGIGIGICICGIGCICIININININNNINNN
~NOOIRLWNI2OOCONOTTRLWNI2AODOONOOTRWN—

N NN
- -
(&) D
o O o

A A A NI NIMIMNIMIMININM
DONDDDNNDDNITIIIIITITION

0O~NIOYU1-RULWN—=OWO00NOOUI-RWN—

2169

2170
2171
2172
2173

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Example 8-18 shows the annotation documentation for an ASBIE element.

Example 8-18: Annotation documentation definition for an ASBIE element

<xsd:group name="ASBIEDocumentation">
<xsd:sequence>

<xsd:element name="UniqueID"
type="bdt:EntityUniqueIldentifierType" />

<xsd:element name="VersionID" type="bdt:VersionIdentifierType"/>

<xsd:element name="SequencingKeyID"
type="bdt:SequencingKeyIdentifierType" />

<xsd:element name="CCTSArtifact"
type="bdt:DocumentationCCTSArtifactType" fixed="ASBIE"/>

<xsd:element name="DictionaryEntryName" type="bdt:NameType"/>

<xsd:element name="Definition" type="bdt:TextType"/>

<xsd:element name="Cardinality" type="bdt:TextType" />

<xsd:element name="ObjectClassQualifierName" minOccurs="0"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="bdt:TextType">
<xsd:attribute name="orderKey"
type="xsd:positiveInteger" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="UsageRule" type="ccts:UsageRuleType"/>
</xsd:sequence>
</xsd:group>

Example 8-19 shows a code snippet of the annotation documentation of an ASBIE
Element.

Example 8-19: Annotation of an ASBIE

<xsd:element name="Status" type="ram:StatusType" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en-US">

<ccts:UniqueID>UNBE0O00000</ccts:UniqueID>
<ccts:VersionID>0.00</ccts:VersionID>
<ccts:SequencingKeyID>1</ccts:SequencingKeyID>
<ccts:CCTSArtifact>ASBIE</ccts:CCTSArtifact>
<ccts:DictionaryEntryName>String</ccts:DictionaryEntryName>
<ccts:Definition>String</ccts:Definition>
<ccts:Cardinality>String</ccts:Cardinality>
<ccts:0ObjectClassQualifierName>String</ccts:0bjectClassQualifierName>
<ccts:UsageRule>

</ccts:UsageRule>
</xsd:documentation>
</xsd:annotation>
</xsd:element>

8.2.5.2 Annotation Application Information (Appinfo)

The annotation xsd:appInfo is expressed for all BIE artifacts defined in the BIE
XML Schema files. The structure of the context is provided in section 7.5.2,
Application Information (ApplInfo). All contexts in which the BIE artifacts are
applicable is expressed in the xsd:appInfo.

XML Naming and Design Rules V3.0 1st Public Review Page 74 of 144

2174

2175
2176
2177
2178
2179
2180
2181
2182
2183

2184

2185
2186
2187
2188
2189
2190
2191

2192

2193
2194

2195
2196

N
—
©
~

A OO0O0O0O0OOOOOOO

NOINN
NOININININININININININININININININNINNINNINNNN
Q1RGN OO OO UGN OO0~ TR LN —-OWO00

NNMNMN;\\\\\\\\\

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

8.3 Business Data Type XML Schema Files

Ensuring consistency of business data types with the UN/CEFACT modularity and
reuse goals requires creating a XML Schema file that defines business data types
within the context category specified in the namespace. The business data type
XML Schema file name must follow the UN/CEFACT XML Schema file naming
approach. The business data type XML Schema file will contain the business data
types which include the implementable core component data types for both
unqualified and qualified data types. For this reason, the business data type XML
Schema file will be used by the reusable BIE XML Schema file and all root XML
Schema files defined within the same namespace.

8.3.1 Use of Business Data Type XML Schema Files

As defined in section 5.7.2, UN/CEFACT publishes a reference Business Data Type
XML Schema that is comprised of XML Schema components representing the
approved, unrestricted CCTS Business Data Type Catalogue BDT artifacts.
Additional Business Data Type XML Schema is created to reflect both the
unrestricted as well as restricted (qualified) BDTs that are used within a given
namespace. These restrictions are implemented as an xsd:restriction or a new
xsd:simpleType.

8.3.2 XML Schema Structure

Each business data type XML Schema file will be structured in a standard format to
ensure consistency and ease of use.

The format is shown in Example 8-20 below and must adhere to the format of the
relevant sections as detailed in Appendix B.

Example 8-20: Structure of BDT XML Schema file

<?xml version="1.0" encoding="utf-8"?>

Lll== ==
<!-- ===== Business Data Type XML Schema File ===== ——>
<l-- -—>
<l==
Schema agency: UN/CEFACT
Schema version: 3.0
Schema date: 15 July 2008

Copyright (C) UN/CEFACT (2008). All Rights Reserved.
. see copyright information ...

—-=>
<xsd:schema targetNamespace=
. see namespace ...
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<[== ==

<l== [mports ——>

<[== ==
. see imports ...

<[== ==

<l== 'vpe Definitions ==

<[== ==

. see type definitions ...

XML Naming and Design Rules V3.0 1st Public Review Page 75 of 144

2226

2227

2228
2229
2230
2231
2232
2233
2234

2235
2236
2237
2238
2239
2240

2241
2242
2243

2244

2245
2246
2247
2248
2249
2250

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

</xsd:schema>

8.3.3 Imports and Includes

The BDT XML Schema components are defined as xsd: complexType oOr
xsd:simpleType directly within each BDT XML Schema file as necessary to
support all Root XML Schema within a given namespace. Each BDT XML Schema
file will use xsd: include for restricted code lists being used by BDT XML Schema
Components within its parent namespace, and will also use xsd: import for any
Common Code List XML Schema files being used by a BDT XML Schema
Components within the BDT XML Schema's parent namespace.

Core Data Type XML Schema file is not directly imported or included, instead the
data type are defined directly within the Business Data Type XML Schema file based
on the requirements of the business implementation and the context category
expressed in the namespace. The Restricted Code List XML Schema file will be
defined within the context category expressed in the given namespace and included
in the BDT XML Schema file.

The Common Code List XML Schema file is imported into the business data type
XML Schema file so that the code list is used directly as defined by the code list
definition.

The BusinessDataType XML Schema file MUST include the
[R 8EOD] | RestrictedCodeList XML Schema files that are defined in the same | 1
namespace.

The BusinessDataType XML Schema file MUST import the
[R B4C0O] | CommonCodeList XML Schema files that it makes use of in the 1
definition of the BDTs.

8.3.4 Type Definitions

Each CCTS BDT artifact within the UN/CEFACT Data Type
[R AE0O] | Catalogue MUST be defined as an xsd: simpleType or 1
xsd:complexType.

[R 973C] The name of a business data type MUST be its dictionary entry

name with separators and spaces removed.

BDTs may have either their content or supplementary components restricted.
Restricted BDT XML Schema Components are derived through restriction to the
allowed ccts:ContentComponent facets ccts: SupplementaryComponent
attributes of the unrestricted BDT type definition, unless non-standard variations from
the base type are required. Non-standard variations will be defined as an
xsd:restriction derivation from the unrestricted BDT TextType.

Every restricted Business Data Type XML Schema Component
[R80FD] | xsd: type definition MUST be derived from its base type using 1
xsd:restriction unless a non-standard variation from the base

XML Naming and Design Rules V3.0 1st Public Review Page 76 of 144

2251

2252
2253
2254
2255

2256

N
N
[&)]
N

NINN
CICICICINNNNN

OOO OO LOLODOO00000000 00000000000 NN NSNS0 OYIUT
WN—=OO00NOUT-RULWN (OO UT-RULWN =2 OO0~ TR WN 2 OO0ON TR WNI OO0

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

type is required.

[R A9F6]

Every restricted Business Data Type XML Schema Component
xsd: type definition requiring a non-standard variation from its
base type MUST be derived from the BDT TextType XML Schema
component.

Note:

If a non-standard variation of the standard date time built-in data types is required,
for example year month, then a qualified data type of the unqualified data type
TextType needs to be defined, with the appropriate restriction specified, e.g. as a
pattern, to specify the required format.

Example 8-21 shows examples of BDT definitions.

Example 8-21: Type Definitions

eTime Type
<xsd:simpleType name="DayDateType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:restriction base="xsd:gDay"/>
</xsd:simpleType>
e e
<l—= ===== ription Text. Type ===== —==>
Sl mm oo s >
<xsd:complexType name="DescriptionTextType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:simpleContent>
<xsd:restriction base="bdt:TextType"/>
</xsd:simpleContent>
</xsd:complexType>
e e
<!-— ===== Uniform Res Id ===== —-->
e e
<xsd:simpleType name="URIType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:restriction base="xsd:anyURI"/>
</xsd:simpleType>
Zl== = === ——>
<!-- ===== Country Identifier. Type ===== —->
<l-=- === === ——>

<xsd:simpleType name="CountryIDType">

<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:restriction base="ids53166:CountryCodeContentType" />

</xsd:simpleType>

[R AA60]

Every business data type based on a single codelist

XML Naming and Design Rules V3.0 1st Public Review Page 77 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

xsd:simpleType MUST contain one of the following:

e xsd:restriction element with the xsd:base attribute
set to the code lists defined simple type with appropriate
namespace qualification or

e xsd:union element with, the xsd:base attribute set to the
code list defined simple type and the xsd :member type
attribute set to the code list defined simple types with
appropriate namespace qualification.

2304 XML Schema declarations for using code lists in business data types are shown in
2305 Example 8-22 through Example 8-25.

N
w
o
(o)

Example 8-22: Usage of only one Code List

<xsd:simpleType name="TemperatureMeasureUnitCodeType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:restriction
base="clm6Recommendation20:MeasurementUnitCommonCodeContentType">
<xsd:length value="3"/>
<xsd:enumeration value="BTU">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:Name>British thermal unit</ccts:Name>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="CEL">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:Name>degree Celsius</ccts:Name>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="FAH">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:Name>degree Fahrenheit</ccts:Name>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>

= =)

Ao AN\

A

NINNY
OGO LICLILIULILILILILIUILILILIULILILILILILILILILILILILILILY

COCOLOGICLICIGININININININININININ)—
OOIRLWNI2OO0NDUTRULWNI OO0~ OTRWNI OO 00N

N
w
w
N

Example 8-23: Combination of Code Lists

<xsd:simpleType name="AccountDutyCodeType">
<xsd:annotation>
. see annotation ...
</xsd:annotation>
<xsd:union memberType="clm64437:AccountTypeCodeContentType
clm65153:DutyTaxFeeTypeCodeContentType" />
</xsd:simpleType>

NONINININONN
LI
BB RAOOW
HOON—-OW000

2345 Example 8-24: Use of Choice for Alternative Code Lists

2346 <xsd:complexType name="PersonPropertyCodeType">

2%47 <xsd:annotation>

2 48 ... see annotation ...

2%48 </xsd:annotation>

2 5 <xsd:choice>

2351 <xsd:element ref="clm63479:MaritalCode"/>

XML Naming and Design Rules V3.0 1st Public Review Page 78 of 144

2360

2361
2362
2363

2364
2365
2366

2367
2368

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<xsd:element ref="clm63499:GenderCode" />
</xsd:choice>
</xsd:complexType>

Example 8-25: Use of Choice for Alternative Code Lists

<xsd:simpleType name="PersonPropertyCodeType">
<xsd:union memberTypes="clm63479:MaritalCode
c1lm63499:GenderCode" />
</xsd:simpleType>

Every business data type that has a choice of two or more code
lists MUST be defined as one of the following:

e A xsd:complexType that contains the xsd:choice
element whose content model consists of element
references for the alternative code lists to be included with

[R AAD1] appropriate namespace qualification

e A xsd:simpleType that contains the xsd:union element
whose xsd : memberType includes the simpleType
definitions of the alternative code lists to be included with
appropriate namespace qualification.

8.3.5 Attribute and Element Declarations

There will be no element declarations in the BDT XML Schema files. There will be
no global attribute declarations in the BDT XML Schema file. The only allowed
attributes will be supplementary components.

Global xsd: element declarations MUST NOT occur in the BDT

[R 8B3D] XML Schema File.

Global xsd:attribute declarations MUST NOT occur in the

[R B340] BDT XML Schema File.

Local xsd:attribute declarations MUST only represent CCTS
[R ACA7] | Supplementary Components for the Business Data Type for which
they are being declared.

8.3.6 Annotations
8.3.6.1 Annotation Documentation

8.3.6.1.1 BDT Types

Every BDT element and type declaration must include structured annotation
documentation.

Every business data type definition MUST contain a structured set
[R BFE5] | of annotation documentation in the following sequence and
pattern:

XML Naming and Design Rules V3.0 1st Public Review Page 79 of 144

2369

N
w
N
o

NINNNNY
GGG LI UL LI LI LI LILILILILILILD
COOOOOO 000000000000 00000000 NN NINISNINNNN
O1RWN=2OOON TR LWNI OO O~NOOTRWN—

XML Naming and Design Rules V3.0 1st Public Review

2008-08-07

way.

time of the Business Data Type instance.

Business Data Type.

Business Data Type.

the Business Data Type.

of the Object.

business.

of a Business Data Type.

¢ UniquelD (mandatory): The identifier that references a
Business Data Type instance in a unique and unambiguous

¢ VersionID (mandatory): An indication of the evolution over

o CCTSArtifact (mandatory): The code of the type of
component. In this case the value will always be BDT.

¢ DictionaryEntryName (mandatory): The official name of the

¢ Definition (mandatory): The semantic meaning of the

e DataTypeQualifierName (mandatory): A name that qualifies
the Representation Term in order to differentiate it from its
underlying Core Data Type and other Business Data Type.

o DataTypeName (mandatory): Name of the DataType.
e PrimitiveTypeCode (mandatory): The primitive data type of

¢ UsageRule (optional, repetitive): Indicates the Usage Rule

¢ BusinessTermName (optional, repetitive): A synonym term
under which the BDT is commonly known and used in the

o Example (optional, repetitive): Example of a possible value

Example 8-26 shows the annotation documentation for a BDT.

Example 8-26: Annotation documentation definition for BDT

<xsd:group name="BDTDocumentation">
<xsd:sequence>
<xsd:element name="UniqueID"
type="bdt:DataTypeUniqueIdentifierType" />

<xsd:element name="VersionID" type="bdt:VersionIdentifierType"/>

<xsd:element name="CCTSArtifact"
type="bdt :DocumentationAcronymCodeType" fixed="BDT"/>

<xsd:element name="DictionaryEntryName" type="bdt:NameType"/>
<xsd:element name="Definition" type="bdt:TextType"/>
<xsd:element name="DataTypeQualifierName" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="bdt:TextType">
<xsd:attribute name="orderKey"

type="xsd:positivelnteger" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

<xsd:element name="DataTypeName" type="bdt:NameType"/>

<xsd:element name="PrimitiveTypeCode"
type="bdt:PrimitiveTypeCodeType" maxOccurs="unbounded" />

<xsd:element name="UsageRule" type="ccts:UsageRuleType"

minOccurs="0" maxOccurs="unbounded"/>

XML Naming and Design Rules V3.0 1st Public Review

Page 80 of 144

A OO0 000

NONININININININININININININININD
SERSSSSSAARIRIES
OOONOUTRLWN-OWO0ONOOIR

2420

2421
2422

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<xsd:element name="BusinessTermName" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="Example" type="bdt:TextType" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

Example 8-27 shows an example annotation documentation of a BDT.

Example 8-27: Annotation of business data types

. see type definition ...
<xsd:annotation>

<xsd:documentation xml:lang="en-US">
<ccts:UniqueID>UNDT000000-000</ccts:UniquelID>
<ccts:VersionID>0.00</ccts:VersionID>
<ccts:CCTSArtifact>BDT</ccts:CCTSArtifact>
<ccts:DictionaryEntryName>String</ccts:DictionaryEntryName>
<ccts:Definition>String</ccts:Definition>
<ccts:DataTypeName>String</ccts:DataTypeName>
<ccts:PrimitiveTypeCode>Binary</ccts:PrimitiveTypeCode>
<ccts:UsageRule>

</ccts:UsageRule>
</xsd:documentation>
</xsd:annotation>
. see type definition ...

8.3.6.1.2 BDT Type Supplementary Components

Every BDT Supplementary Component attribute declaration must include structured
annotation documentation.

For every supplementary component xsd: attribute declaration
a structured set of annotation documentations MUST be present in
the following pattern:

¢ UniquelD (mandatory): The identifier that references a
Supplementary Component of a Core Component Type
instance in a unique and unambiguous way.

¢ VersionlD (mandatory): An indication of the evolution over
time of the BDT Supplementary Component instance.

e SequencingKeylD (mandatory): Identifier of the sequence of
the BDT Supplementary Component.

[R 9C93] o CCTSArtifact (mandatory): The type of component. In this 1
case the value will always be BDTSC.

e DictionaryEntryName (mandatory): The official name of the
ASBIE.

o Definition (mandatory): The semantic meaning of the
ASBIE.

e DataTypeQualifierName (mandatory):
e DataTypeName (mandatory):

e PropertyTermName (mandatory): The Property Term Name
of the associated Supplementary Component.

XML Naming and Design Rules V3.0 1st Public Review Page 81 of 144

2423

2424
2425
2426
2427

2428

2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439

2440

2441
2442

2443
2444
2445

2446

2447
2448

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

e RepresentationTermName (mandatory):
e PrimitiveTypeCode (mandatory):

e UsageRule (optional, repetitive): Indicates the Usage Rule
of the Object.

¢ BusinessTermName (optional, repetitive): A synonym term
under which the BDT is commonly known and used in the
business.

o Example (optional, repetitive): Example of a possible value
of a Supplementary Component.

8.3.6.2 Annotation Application Information (Applinfo)

The annotation xsd:appInfo is expressed for all BDT artifacts defined in the BDT
XML Schema files. The structure of the context is provided in section 7.5.2,
Application Information (ApplInfo). All contexts in which the BDT artifacts are
applicable is expressed in the xsd:appInfo.

8.4 Code List XML Schema Files

Codes are an integral component of any business to business information flow.
Codes have been developed over time to facilitate the flow of compressed,
standardized values that can be easily validated for correctness to ensure consistent
data. In order for the XML instance documents to be fully validated by the parsers,
any codes used within the XML document need to be available as part of the
schema validation process. Many international, national and sectorial agencies
create and maintain code lists relevant to their area. If required to be used within an
information flow, these code lists will be stored in their own XML Schema file, and
are referred to as external code lists. For example, many of the existing code lists
that exist in the United Nations Code List (UNCL) will be stored as external code list
XML Schema files for use within other UN/CEFACT XML Schema files.

Each UN/CEFACT maintained code list MUST be defined in its
[ROE40] | J\n XML Schema file. 2

UN/CEFACT recognizes two basic types of code lists:

e Common code list are universally defined for all context which are generally
maintained by standards bodies.

e Restricted code list which are defined as a subset or at times additions to
existing common code lists. These code lists are defined within a given
context of their use.

8.4.1 Shared Code List XML Schema Components

XML Schema Components that are the same for both Common Code List XML
Schema Files and Restricted Code List XML Schema Files.

XML Naming and Design Rules V3.0 1st Public Review Page 82 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

2449 8.4.1.1 Code List XML Schema Structure

2450 Each Code List XML Schema file will be structured in a standardized format in order
2451 to ensure consistency and ease of use.

2452 This structure is show in Example 8-28.
2453 Example 8-28: Structure of code lists

<?xml version="1.0" encoding="UTF-8"?>

Ll== ==
<!-- ===== 6Recommendation20 - Code List XML Schema File ===== ==>
<l-- -—>
<l —=

Schema agency: UN/CEFACT

Schema version: 2.0

Schema date: 17 January 2006

Code list name: Measurement Unit Common Code

Code list agency: UNECE

Code list version: 3

Copyright (C) UN/CEFACT (2006). All Rights Reserved.
. see copyright information ...

-—>

<xsd:schema targetNamespace=" ... see namespace ...
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<[== ==3
<!-- Root Element -——>
<[== ==
. see root element declaration ...
<l-= -—>
<l== 'vpe Definitions ==
<l-= -——>
<!-- ===== Type Definition: Measurement Unit Common Code Content Type == -->
<[== ==

. see type definition ...
</xsd:schema>

NONINNNN
o e e T T L S R N O e N N N e e e e e S S S S N e e
00000000000 ~NNNNNNNNNNOYOY O OO YNUIOTIOITTIOT
G1IROON OO0~ TR WN OO0~ OT-RLWN OO 00~NOOT™

N
EaN
o]
»

8.4.1.2 Code List XML Schema Name

2487 The name of the code list schema files are dependent upon the agency that has
2488 defined them and the name of the code list it self.

The XML Schema File, file name for code lists MUST be of the
form:

<Agency Identifier | Agency Name Text> <List
Identification Identifier | List Name
Text> <Version Identifier>.xsd

All periods, spaces, or other separators are removed except for the

[R 849E] “.” before xsd and the “_” between the names. 2

Where:

e Agency ldentifier = identifies the agency that manages the
list. The default agencies used are those from DE 3055 but
roles defined in DE 3055 cannot be used.

e Agency Name Text = the name of the agency that maintains

XML Naming and Design Rules V3.0 1st Public Review Page 83 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

the list.

o List Identification Identifier = identifies a list of the respective
corresponding codes or ids.

e List Name Text = the name of a list of codes.

e Version Identifier = identifies the version.

2489 8.4.2 Common Code List XML Schema Components

2490 Common code list that are universally defined for all contexts and maintained by
2491 standards bodies will be imported into the context specific namespaces that use
2492 them.

2493 8.4.2.1 Namespace Name for Common Code Lists

2494 The namespace name for code list is somewhat unique in order to convey some of
2495 the supplementary component information rather than including them as attributes.
2496 Specifically, the UN/CEFACT namespace structure for a namespace name of a code
2497 list extends the earlier rules for namespace names.

The XML Schema namespaces for code list XML Schema files MUST
use the following pattern:

URN: | urn:<organization>:<org hierarchy> *[:<org
hierarchy level
n>] :codelist:common:<major>:<status>:<name>

URL: | http://<organization>/<org
hierarchy>*[/<org hierarchy level
n>] /codelist/common/<major>/<status>/<name>

Where:

e organization — Identifier of the organization providing the
R standard.

992A] e org hierarchy — The first level of the hierarchy within the

organization providing the standard.

e org hierarchy level — Zero to n level hierarchy of the organization
providing the standard.

e codelist — A fixed value token for common codelists.

e common — A fixed value token for common codelists.
e major — The Major version number of the codelist.

e status — The status of the schema as: draft|standard

e name — The name of the XML Schema file (using upper camel
case) with periods, spaces, or other separators and the words
‘schema module’ removed.

XML Naming and Design Rules V3.0 1st Public Review Page 84 of 144

NINININININNN
[6)(6,(6,(6,16,(6,16,(6)]
ot Gt Gt vt Gty

CO~NOYUI-RWN—

NINNNNNNY
Q1010101010101
NININININNNY
OOO~NOOIRW

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

o Code list names are further defined as: <Code List
Agency Identifier|Code List Agency Name Text>
><divider><Code List Identification Identifier|Code List
Name Text>

= Where:

e Code List Agency ldentifier — is the identifier
for the agency that code list is from.

e Code List Agency Name Text — is the text of
the name that the code list is from.

e Divider — the divider character for URN is ‘'
the divider character for URL is /.

e Code List Identification Identifer — is the
identifier for the given code list.

e Code List Name Text — is the text of the
name for the code list.

Example 8-29 shows a namespace name of a code list using an agency and a code
list identifier at draft status.

Example 8-29: Namespace name of a code list with an agency and a code list identifier at draft
status

"urn:un:unece:uncefact:codelist:common:D.04A:draft:6:3403: "

where

D.04A = the version of the UN/CEFACT directory

6 = the value for UN/ECE in UN/CEFACT data element 3055 representing
the Code List. Agency. Identifier

3403 = UN/CEFACT data element tag for Name type code representing
the Code List. Identification. Identifier

Example 8-30 shows a namespace name of a proprietary code list at draft status.

Example 8-30: Namespace name of proprietary code list at draft status

"urn:un:unece:uncefact:codelist:common:1l:draft:Security Initiative:Document Securit
y"
where
SecurityInitiative = the code list agency name of a repsonsible agency, which

is not defined in UN/CEFACT data element 3055

representing the Code List. Agency. Identifier
DocumentSecurity = the value for Code List. Name. Text
1.2 = the value for Code List. Version. Identifier

Example 8-31 shows a namespace name of a code list with and agency and code list identifier
at standard status.

Example 8-31: Namespace name of a code list with an agency and a code list identifier at
standard status

"urn:un:unece:uncefact:codelist:common:D.04A:standard: 6:3403"

where

6 = the value for UN/ECE in UN/CEFACT data element 3055 representing
the Code List. Agency. Identifier

3403 = UN/CEFACT data element tag for Name status code representing
the Code List. Identification. Identifier

D.04A = the version of the UN/CEFACT directory

XML Naming and Design Rules V3.0 1st Public Review Page 85 of 144

2530

N
[6)]
w
-_—

NINNNNNNN
Q1010101010101
OOLILLILILILILD
O0O~NOYUI-RWN

N
(@]
N
o

2541
2542
2543

2544

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554

2555
2556
2557
2558
2559
2560

2561
2562
2563
2564

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Example 8-32 shows a namespace name of a proprietary code list at standard status.

Example 8-32: Namespace name of proprietary code list at standard status

"urn:un:unece:uncefact:codelist:common:l:standard:Security Initiative:Document Secu
rity"
where
SecurityInitiative = the code list agency name of a responsible agency, which

is not defined in UN/CEFACT data element 3055

representing the Code List. Agency. Identifier
DocumentSecurity = the value for Code List. Name. Text
1.2 = the value for Code List. Version. Identifier

While the versioning for code lists published by external organisations is outside of
the UN/CEFACT control. UN/CEFACT published code lists in XML Schema files the
value of the Code List Version Identifier will follow the rules for versioning other
UN/CEFACT XML Schema files.

8.4.2.2 XML Schema Namespace Token for Common Code Lists

A unique token will be defined for each namespace for common code lists. The
token representing the namespace of common code lists should be constructed
based on the identifier of the agency maintaining the code list and the identifier of the
specific code list as issued by the maintenance agency except where there is no
identifier. When there is no identifier, the name for the agency and/or code list
should be used instead. This will typically be true when proprietary code lists are
used. This method of token construction will provide uniqueness with a reasonably
short token. When the code list is used for a business data type with a restricted set
of valid code values, the business data type name is required to be used to
distinguish one set of restricted values from another.

The agency maintaining the code list will generally be either identified by the agency
code as specified in data element 3055 in the UN/CEFACT Code List directory or the
agency name if the agency does not have a code value in 3055. The identifier of the
specific code list will generally be the data element tag of the corresponding list in
the UN/CEFACT directory. If there is no corresponding data element, then the name
of the code list will be used.

In cases where the code list schema is a restricted set of values of a published code
list schema, the code list schema will be associated with a business data type, and
the name of the business data type will be included as part of the namespace token
to ensure uniqueness from the unrestricted code list schema.

Each UN/CEFACT maintained Common Code list XML Schema
File MUST be represented by a unique token constructed as
follows:

clm[<Business data type name>]<Code List Agency
[R 9FD1] Identifier|Code List Agency Name Text><Code List 2
Identification Identifier|Code List Name Text>

Where any repeated words are eliminated.

e Business Data Type Name — is the name of the business
data type in the business data type XML Schema file.

XML Naming and Design Rules V3.0 1st Public Review Page 86 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

e Code List Agency ldentifier — is the identifier for the agency
that code list is from.

e Code List Agency Name Text — is the text of the name that
the code list is from.

e Code List Identification Identifier — is the identifier for the
given code list.

e Code List Name Text — is the text of the name for the code
list.

Example 8-33 shows a code list token with an agency and code list identifier.

Example 8-33: Code list token with an agency and a code list identifier

The code list token for Name Type. Code is clm63403

where

6 = the value for UN/ECE in UN/CEFACT data element 3055 representing
the Code List. Agency. Identifier

3403 = UN/CEFACT data element tag for Name status code representing
the Code List. Identification. Identifier

Example 8-34 shows a code list token for a business data type with an agency and

code list identifiers.

Example 8-34: Code list token for a qualified data type with an agency and code list identifiers

Code list token for Person Name Type. Code is clmPersonNameType63403

where

PersonNameType = name of the qualified data type

6 = the value for UN/ECE in UN/CEFACT data element 3055 representing
the Code List. Agency. Identifier

3403 = UN/CEFACT data element tag for Name status code representing
the Code List. Identification. Identifier

Example 8-35 shows a code list token for a proprietary code list.

Example 8-35: Code list token for a proprietary code list

Code list token for a proprietary code list for Document Security is
clmSecurityInitiativeDocumentSecurity
where
SecurityInitiative = the code list agency name of a repsonsible agency, which is
not defined in UN/CEFACT data element 3055

representing the Code List. Agency. Identifier
DocumentSecurity = the value for Code List. Name. Text

Based on the constructs identified in the above examples, a namespace declaration

for a code list would appear as shown in Example 8-36.

Example 8-36: Target namespace declaration for a code list

<xsd:schema
targetNamespace="urn:un:unece:uncefact:codelist:common:D.04A:draft:6:4437"
xmlns:clm64437=" urn:un:unece:uncefact:codelist:common:D.04A:draft:6:4437 "
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

XML Naming and Design Rules V3.0 1st Public Review Page 87 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

2600 | Note:

2601 | External developers are encouraged to follow the above construct rule when
2602 | customizing schema for code lists to ensure that there is no namespace conflict.

2603 8.4.2.3 Imports and Includes

2604 UN/CEFACT Common Code List Schema Modules are standalone schema modules
2605 and will not import or include any other schema modules.

R 86C8] Common Code List XML Schema files MUST NOT import or 1
include any other XML Schema Files.
2606 8.4.2.4 Type Definitions
In each Common Code List XML Schema File one, and only one,
[R ABEF] | named xsd:simpleType MUST be defined for the content 1

component.

In each Common Code List XML Schema File the name of the
[R92DA] | xsd:simpleType MUST be the name of code list root element 1
with the word ‘ContentType’ appended.

2607 Example 8-37 shows a simple type definition used in a code list.

2608 Example 8-37: Simple type definition of code lists

2609 €l== ==
26’0 <!-- ===== Type Definitions ===== —->
2611 €l== ==
26’2 <!-— ===== Type Definition: Account Type Code ===== ——>

2613 €l== ==
26’ 4 <xsd:simpleType name="AccountTypeCodeContentType">

26’ 5 <xsd:restriction base="xsd:token">

26’ 6 <xsd:enumeration value="2">

26: 7 . see enumeration ...

26 8 </xsd:enumeration>

26: 9 </xsd:restriction>

2620 </xsd:simpleType>

2621 Each code list XML Schema file will have a single xsd: simpleType defined. This

2622 type definition will have a xsd: restriction expression whose base is a XML
2623 Schema built-in data type. The xsd:restriction will be used to convey the
2624 content component enumeration value(s).

In each Common Code List XML Schema File the
[R B40B] | xsd:restriction element base attribute value MUST be setto | 1
xsd: token.

Each code in a Common Code List MUST be expressed as an
[R962C] | xsd:enumeration, where the xsd:value for the enumeration is | 1
the actual code value.

2625 Example 8-38 shows an enumeration facet for a code list.
XML Naming and Design Rules V3.0 1st Public Review Page 88 of 144

NINININNININININNINN N
[e2]e)]er/erIer er]er 0r 0> erI0) 0)] ()]
COGLIUWUILICIUGILOLININN Eg

CO~NOXOTRWLWNI—-OWO00N

N
[o)]
w
[(e]

2640
2641

NNNN
[eler]ere}
e e
O1-hOWN

2646
2647
2648

2649
2650

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Example 8-38: Enumeration facet of a code lists

. see type defintion ...
<xsd:enumeration value="2">
<xsd:annotation>
. see annotation
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="15">
<xsd:annotation>
. see annotation
</xsd:annotation>
</xsd:enumeration>

8.4.2.5 Element Declarations

In each Common Code List XML Schema File a single root
[R 8D1D] | element MUST be globally declared within the given code list XML
Schema file.

In each Common Code List XML Schema File the code list root
element MUST be of a type representing the actual list of code
values represented by the type whose name ends in
‘ContentType’.

[R BE84]

Example 8-39 shows a root element declaration for a code list.

Example 8-39: Root element declaration of code lists

<ll== ===
<!-- ===== Root Element ===== -->
<ll== ===

<xsd:element name="AccountTypeCode" type="clm64437:AccountTypeCodeContentType"/>

8.4.2.6 Annotation
8.4.2.6.1 Annotation Documentation
8.4.2.6.1.1 Code List Documentation

Every Common Code List XML Schema file must include structured annotation
documentation.

Every Common Code List MUST contain a structured set of
annotation documentation in the following sequence and pattern:

e UniquelD (mandatory): The identifier that references a
Business Data Type instance in a unique and unambiguous
way.

[R BFES] e VersionlD (mandatory): An indication of the evolution over

time of the Code List.
¢ Name (optional):

o CCTSArtifact (mandatory): The code of the type of
component. In this case the value will always be CLM.

XML Naming and Design Rules V3.0 1st Public Review Page 89 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

e Description (mandatory):

¢ PrimitiveTypeCode (mandatory): The primitive data type of
the Code List.

¢ ModificationAllowedIndicator (mandatory):
¢ Defaultindicator (mandatory):

o UsageRule (optional, repetitive): Indicates the Usage Rule
of the Object.

¢ BusinessTermName (optional, repetitive): A synonym term
under which the Code List is commonly known and used in
the business.

2651 Example 8-40 shows the declaration of the code list documentation structure.

N
(o]
()]
N

Example 8-40: Declaration of code lists documentation structure

<xsd:group name="CodelListDocumentation">
<xsd:sequence>

<xsd:element name="UniqueID" type="bdt:IDType"/>

<xsd:element name="VersionID" type="bdt:IDType"/>

<xsd:element name="Name" type="bdt:NameType" minOccurs="0"/>

<xsd:element name="AgencyID" type="bdt:IDType"/>

<xsd:element name="AgencyName" type="bdt:NameType" minOccurs="0"/>

<xsd:element name="CCTSArtifact"
type="bdt:DocumentationCCTSARtifactCodeType"/>

<xsd:element name="Description" type="bdt:TextType"/>

<xsd:element name="PrimitiveTypeCode"
type="bdt:PrimitiveTypeCodeType" />

<xsd:element name="ModificationAllowedIndicator"
type="bdt:IndicatorType" minOccurs="0"/>

<xsd:element name="DefaultIndicator" type="bdt:IndicatorType"
minOccurs="0"/>

<xsd:element name="UsageRule" type="ccts:UsageRuleType"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="BusinessTermName" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>
</xsd:group>

NINININININININININININININININININNINNN
[e)]e)]e)/er]0) 0 e) 0)]0) 0rler 0)/0)]0) 0pler/0rl0r 0rl0r/er e}
NSNS0 OO INOINIIION
B ON-2SO0ONCTT-RULWN OO0~ W

2675 8.4.2.6.1.2 Code List Value Documentation

2676 In order to facilitate a clear and unambiguous understanding of the list of allowable
2677 codes within an element, annotations will be provided for each enumeration to
2678 provide the code name and description.

Each code list xsd: enumeration MUST contain a structured set
of annotations in the following sequence and pattern:

e CCTSArtifact (mandatory): The code of the type of
component. In this case the value will always be CLM

[R A814] e Content (optional): The code of value for an enumeration.
e Name (optional): The name or text that the represents.

e Description (optional): Descriptive information concerning
the code

e UsageRule (optional, repetitive): Indicates the Usage Rule

XML Naming and Design Rules V3.0 1st Public Review Page 90 of 144

NINININININININNININNN
[e)]e) er/e) e)0) 0) 0) 0)l0) 0) 0) 0)]
(OLOOOXO 000000000000 0000
BOIN—=2OOO~NCOIRLWN

N
[o)]
[(e]
(&)

2696
2697

2698

2699
2700
2701
2702

2703
2704
2705

2706
2707

2708
2709

2710
2711
2712
2713

2714
2715
2716
2717

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

of the Object.

e BusinessTermName (optional, repetitive): A synonym term
under which the Code List Value is commonly known and
used in the business.

Example 8-41 shows the annotation documentation definition for the enumerations
values of a code list.

Example 8-41: Annotation documentation definition of the enumerations values of a code list

<xsd:group name="CodeValueDocumentation">
<xsd:sequence>
<xsd:element name="CCTSArtifact"
type="bdt:DocumentationCCTSArtifactType"/>
<xsd:element name="Content" type="xsd:string" minOccurs="0"/>
<xsd:element name="Name" type="bdt:NameType" minOccurs="0"/>
<xsd:element name="Description" type="bdt:TextType"/>
<xsd:element name="UsageRule" type="ccts:UsageRuleType"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="BusinessTermName" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

8.4.2.6.2 Annotation Application Information (ApplInfo)

Common Code List are intended to be applicable to all context as such they do not
provide specific contexts.

8.4.3 Restricted Code List XML Schema Components

Users of the UN/CEFACT library may identify any subset or superset they wish from
a specific code list for their own trading community by defining a business data type.
This is accomplished through the use of Restricted Code List that do this for the
context category expressed in the namespace.

Representation of a business data type of code lists could be
e A combination of several individual code lists using xsd:union
o A choice between several code lists, using xsd: choice

e Sub setting an existing code list using xsd:restriction or through
defining the sub set directly.

Each of these can easily be accommodated in this syntax solution as required by the
user’s business requirements.

Restricted Code List are Code List XML Schema files that contain code lists that are
applicable within the context category that is contained within the namespace that
the restricted code list is defined. Restricted Code List XML Schema files contain a
restricted subset of a code list.

A restricted code list XML Schema file maybe used where an existing common code
list XML Schema file needs to be extended, where no suitable external code list XML
Schema exists, or where the context in which the code list is to be used is well
defined and expressed in the namespace.

XML Naming and Design Rules V3.0 1st Public Review Page 91 of 144

2718

2719
2720

2721

2722
2723

2724
2725

2726
2727

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Restricted Code List XML Schema file MUST be used to
o Extend existing common code list or
[R 9FD1] e Define a codelist where one does not exist or 2

e Restrict the value of a common codelist for the context
category in which it is defined.

8.4.3.1 Namespace Name for Restricted Code Lists

The namespace name for restricted code list uses the namespace for the context
category in which it is defined. This is described earlier in this document.

8.4.3.2 UN/CEFACT XML Schema Namespace Token for Restricted Code Lists

The namespace token for restricted code list uses the namespace token for the
context category in which it is defined. This is described earlier in this document.

8.4.3.3 Imports and Includes
Restricted Code List Schema Modules may import Common Code List XML Schema

file if the Restricted Code List is restricting the Common Code List Schema file
content.

Restrict Code List XML Schema files MUST NOT import or include
[R 86C8] | any other XML Schema files other than possibly a Common Code | 1
List XML Schema file which it is restricting.

XML Naming and Design Rules V3.0 1st Public Review Page 92 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

2728 9 XML Instance Documents

2729 In order to be UN/CEFACT conformant, an instance document must be valid against
2730 the relevant UN/CEFACT compliant XML Schema file(s). The XML instance

2731 documents should be readable and understandable by both humans and

2732 applications, and should enable reasonably intuitive interactions. A XPath navigation
2733 path should describe the complete semantic understanding by concatenating the
2734 nested elements. This navigation path should also reflect the meaning of each

2735 dictionary entry name of a ABIE, BBIE or ASBIE.

2736 This section further describes the requirements XML Instance documents:

2737 e Character Encoding
2738 e xsi:schemalocation
2739 e Empty Content
2740 e Xxsitype

2741 9.1 Character Encoding

2742 In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of Understanding
2743 Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as agreed to by
2744 UN/CEFACT, all UN/CEFACT XML will be instantiated using UTF. UTF-8 is the
2745 preferred encoding, but UTF-16 may be used where necessary to support other
2746 languages.

All XML MUST be instantiated using UTF. UTF-8 should be used if

[RACEST | possible, if not UTF-16 should be used.

2747 9.2 xsi:schemalocation

2748 The xsi:schemaLocation and xsi:noNamespaceLocation attributes are part
2749 of the XML schema instance namespace (http://www.w3.0rg/2001/XMLSchema-
2750 instance). To ensure consistency, the token xsi will be used to represent the XML
2751 schema instance namespace.

The xsi namespace prefix MUST be used to reference the
"http://www.w3.0rg/2001/XMLSchema-instance"
namespace and anything defined by the W3C XMLSchema-
instance namespace.

[R A1B9]

2752 9.3 Empty Content

2753 Empty elements do not provide the level of assurance necessary for business
2754 information exchanges and as such, will not be used.

2755 The only case in which elements maybe empty are in cases of where the key and
2756 keyRef attributes are used to reference other entities in a given XML instance.

XML Naming and Design Rules V3.0 1st Public Review Page 93 of 144

2757

2758
2759
2760

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

[R 9277] The xsi:nil attribute MUST NOT appear in any conforming
instance.
9.4 xsi:type

The xsi:type attribute allows for substitution during an instantiation of a xml
document. In the same way that substitution groups are not allowed, the xsi:type
attribute is not allowed.

[R 8250] The xsi:type attribute MUST NOT be used within an XML Instance.

XML Naming and Design Rules V3.0 1st Public Review Page 94 of 144

2761

2762
2763
2764
2765

2766

2767
2768
2769

2770
2771

2772
2773
2774

2775
2776

N
~
~
~

NIRIN
000000000000 A0AOAAAAAAOCO~NINININININININININININNINNNNNNNNN
233 ZSO500000O0OOHHOOOOHXAHHO0000000000000000~

R ULWN—-=2OO00NCU1-RULWN OO0~ O1-RLWN =2 OO00NH TR LWN OO0

2815

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

10 Use Cases for Common Code Lists

Code lists provide mechanisms for conveying data in a consistent fashion where all
parties to the information — originator, sender, receiver, processor — fully understand
the purpose, use, and meaning of the data. The UN/CEFACT XML NDRs support
flexible use of code lists. This section details the mechanisms for such use.

The UN/CEFACT XML NDRs allow for five alternative uses for code lists:

Referencing a predefined standard code list, such as ISO 4217 currency
codes as a supplementary component in an business data type, such as
bdt:AmountType.

Referencing any code list, standard or proprietary, by providing the required
identification as attributes in the business data type bdt:CodeType.

Referencing a predefined code list by declaring a specific business data type.
Choosing or combining values from several code lists.

Restricting the set of allowed code values from an established code list.

Example 10-1 Code Use Example Schema is used as the basis for examples that
illustrate how to implement each of these alternatives.

Example 10-1: Code Use Example Schema

This

<xsd:schema xmlns:ordman=":un:unece:cefact:data:ordermanagement:1l:draft"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="urn:un:unece:cefact:data:ordermanagement:1l:draft"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<!-- ===== 1Include ===== -->
<xsd:include
schemaLocation="http://www.unece.org/uncefact/data/ordermanagement/1l/draft/Business
InformationEntity 1p3p6.xsd"/>
<xsd:include
schemaLocation="http://www.unece.org/uncefact/data/ordermanagement/1/draft/Business
DataType 1p3p6.xsd"/>

<!-- Root element -->
<xsd:element name="Invoice" type="ordman:InvoiceType"/>
<!-- Messase type declaration -->

<xsd:complexType name="InvoiceType">
<xsd:sequence>
<xsd:element name="Product" type="ordman:ProductType"/>
<xsd:element name="CustomerParty" type="ordman:PartyType"/>
</xsd:sequence>
</xsd:complexType>
<!-- The below type declaration would normally appear in a separate schema module
for all reusable components (ABIE) but is included here for completeness -->
<xsd:complexType name="ProductType">
<xsd:sequence>
<xsd:element name="TotalAmount" type="ordman:AmountType" />
<xsd:element name="TaxCurrencyCode" type="ordman:CodeType"/>
<xsd:element name="ChangeCurrencyCode"
type="ordman:CurrencyCodeType" />
<xsd:element name="CalculationCurrencyCode"
type="ordman:CalculationCurrencyCodeType" />
<xsd:element name="RestrictedCurrencyCode”
type="ordman:RestrictedCurrencyCodeType” />
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

schema includes:

XML Naming and Design Rules V3.0 1st Public Review Page 95 of 144

NININNINININININININININININININNINININNNNNN
Q0000000000000 000000000000000000000000000000000000
OO UINIVINIOINIOIVIOINE DA DAL N N ANOIOWOIW

—OOONOOTRULWNI OO0~ TR LWNI OO0~

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

¢ The XML Schema file of all business data types defined for the given contect
category (business process value which is order management), such as,
AmountType, CodeType, QuantityType.

o The two specific data types CurrencyCodeType and
CalculationCurrencyCodeType are defined as restricted code list that
are included through the BDT XML Schema File.

e The XML Schema file of all BIE defined for the given conext category such as
PartyType.

Within the xsd: complexType of ProductType, five local elements are declared.
Each of these elements represents one of the five different code list options.

10.1 Referencing a Common Code List in Business Data Types

In the Code Use Example Schema, the element TotalAmount is declared as shown
in Example 10-2.

Example 10-2: Declaration of TotalAmount Element

<xsd:element name="TotalAmount" type="ordman:AmountType"/>

As shown in the element declaration, TotalAmount is of the CCTS business data
type AmountType which has been defined in the UN/CEFACT business data type
XML Schema file for the business process context category with the value of order
management. The AmountType declaration is as show in Example 10-3.

Example 10-3: Declaration of Amount DataTypes in the BDT

<xsd:schema targetNamespace="urn:un:unece:uncefact:data:ordermanagement:l:draft"
xmlns:clm54217="urn:un:unece:uncefact:codelist:common:1l:draft:5:4217:2001" ..
elementFormDefault="qualified" attributeFormDefault="unqualified">

Zl== -—>
<!-- ===== Imports ===== -->
<!-- -—>
<!-- ===== Imports of Code Lists ===== —->
<!-- -—>
<xsd:import namespace="urn:un:unece:uncefact:codelist:common:1l:draft:5:4217:2001"
schemaLocation="
http://www.unece.org/uncefact/codelist/common/1/draft/5/4217 2001 .xsd "/>
Zl== -—>
<!-- ===== Type Definitions ===== -->
<!-- -—>
<!-- ===== Amount Decimal. Type =====
-—>
<!-- -—>

<xsd:complexType name="AmountDecimalType">
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute name="currencyCode"
type="clm5IS042173A:ISO3AlphaCurrencyCodeContentType" use="optional"/>

</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

This AmountType has attributes declared that represent the supplementary
components defined in CCTS for this data type. These attributes include
currencyCode for the supplementary component of Amount. Currency. Code. This
currencyCode attribute is declared to be of the xsd: simpleType

XML Naming and Design Rules V3.0 1st Public Review Page 96 of 144

NINININININININININININININININININNINININNNNINNN
(OLO0000000000000C000000000C000000000C0000000CO0000000000

OOOOOOOLOODOO000000000000CO000000NNNNNN
OO0~ OIRULWNI OO0 OTRWNI2OOONOOT™

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

clm5IS042173A:ISO3AlphaCurrencyCodeContentType. The
clm5IS042173A:ISO3AlphaCurrencyCodeContentType has been declared in
the code list schema module for ISO Currency Codes, and the allowed code values
for the currencyCode attribute have been defined as enumeration facets in the
clm5IS042173A:ISO3AlphaCurrencyCodeContentType type definition.

An extract of the code list schema module for ISO Currency Codes is as shown in
10-4.

Example 10-4: Declaration of a Currency Code List

Zl== ==>
<l=-= ===== Root Element Declarations ===== -->
Zl== ==>
<xsd:element name="CurrencyCode" type="clm54217:CurrencyCodeContentType"/>

Zl== ==>
<!-- ===== Type Definitions ===== —->
Zl== ==>
<!-- ===== Code List Type Definition: Currency Codes ===== —->

<l== ===
<xsd:simpleType name="CurrencyCodeContentType">
<xsd:restriction base="xsd:token">
<xsd:enumeration value="AED">
<xsd:annotation>
<xsd:documentation>
<CodeName>Dirham</CodeName>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="AFN">
<xsd:annotation>
<xsd:documentation>
<CodeName>Afghani</CodeName>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

The currencyCode attribute has a fixed value of ISO 4217 Currency Code as defined
in CCTS. Thus, only code values from this code list are allowed in a CEFACT
conformant instance document. In such an instance document, actual conveyance
of a currency code value would be represented as:

<TotalAmount currencyID="AED">3.14</TotalAmount>

It should be noted that when using this option, no information about the code list
being used is carried in the instance document as this information is already defined
in the underlying XML Schema.

10.1.1 Referencing any code list using BDT CodeType

The second element in our example message — TaxCurrencyCode — is of the
business data type bdt:CodeType.

<xsd:element name="TaxCurrencyCode" type="bdt:CodeType"/>

This bdt : CodeType data type includes a number of supplementary components
required in order to uniquely identify the code list to be used for validation.

XML Naming and Design Rules V3.0 1st Public Review Page 97 of 144

2916

N
©
—
~

NINININININININININININININININININ
(OLOOOLOLOODOOLOODOOOOO
COLIGICILICININININININININININ = —
O1-RGWN—=2OO00NOUTRLWN—OW000

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

The bdt:CodeType is declared in the BDT XML Schema file shown in Figure 10-5
Example 10-5: Declaration of a Code Type in the BDT XML Schema File

<xsd:complexType name="CodeType">
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="1istID" type="xsd:token"
use="optional"/>
<xsd:attribute name="listName" type="xsd:string"
use="optional"/>
<xsd:attribute name="listAgencyID" type="xsd:token"
use="optional"/>
<xsd:attribute name="listAgencyName" type="xsd:string"
use="optional"/>
<xsd:attribute name="listVersionID" type="xsd:token"
use="optional"/>
<xsd:attribute name="1istURI" type="xsd:anyURI"
use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

When the bdt : CodeType is used, either the listURI (which will point uniquely to the
code list) should be used, or a combination of the other attributes should be used.
Thus, it is possible to refer to the code list relevant attributes either by the specific
attributes for the explicit display of supplementary components, or by the list URI in
which the value is based on the namespace name conventions.

The association to the specific namespace must be defined during runtime. In an
instance document this element could be represented as:

<TaxCurrencyCode listName="ISO Currency Code" listAgencyName="ISO" 1istID="ISO
4217" listVersionID="2001" listAgencyID="5>AED</TaxCurrencyCode>

or

<TaxCurrencyCode
1istURI="urn:un:unece:uncefact:codelist:draft:5:4217:2001">AED</TaxCurrencyCode>

It should be noted that when applying this option, validation of code values in the
instance document will not be done by the XML parser.

10.1.2 Referencing a Common Code Listin a BDT

The third element in our example message ChangeCurrencyCode is based on the
business data type bdt :CurrencyCodeType.

<xsd:element name="ChangeCurrencyCode"
type="bdt:CurrencyCodeType" />

The bdt: CurrencyCodeType would be defined in the qualified data type schema
module as:

<xsd:simpleType name="CurrencyCodeType">
<xsd:restriction base="clm54217-A:CurrencyCodeContentType"/>
</xsd:simpleType>

XML Naming and Design Rules V3.0 1st Public Review Page 98 of 144

2960
2961
2962

2963

2964

2965
2966

GIGLONININININININININ
OO(OLOOODOOO©O
OOOLOOODOOO©O
—~OOONOOTRWN—

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

This means that the value of the ChangeCurrencyCode element can only have code
values from the identified ISO 4217 code list. In an instance document this element
would be represented as:

<ChangeCurrencyCode>AED</ChangeCurrencyCode>

Note:

When using this option no information about the code list to be used is carried in the
instance document as this is already defined in the XML schema.

10.2Choosing or Combining Values from Several Code Lists

The fourth option is to chose or combine values from diverse code lists by using
either the xsd:choice or xsd:union elements.

10.2.1 Choice

In the Code Use Example Schema, the element CalculationCurrencyCode is
declared as:

<xsd:element name="CalculationCurrencyCode"
type="bdt:CalculationCurrencyCodeType" />

The CalculationCurrencyCode element is business data type
bdt:CalculationCurrencyCodeType.

The bdt:CalculationCurrencyCodeType is defined in the BDT XML Schema
File as:

<xsd:complexType name="CalculationCurrencyCodeType">
<xsd:choice>
<xsd:element ref="clm54217-N:CurrencyCode"/>
<xsd:element ref="clm54217-A:CurrencyCode"/>
</xsd:choice>
</xsd:complexType>

The xsd: choice element provides a choice of values from either the c1m54217-
N:CurrencyCode or from c1lm54217-A:CurrencyCode. The schema module for
clm54217-A:CurrencyCode is the same as the one used in section 10.1.1 above.
The sample schema module for clm54217-N: CurrencyCode is shown in Example
10-6.

Example 10-6: Sample ciIm54217-N:CurrencyCode Schema Module:

<[== ==3
<!-- ===== Root Element Declarations ===== —-=>
<[== ==3
<xsd:element name="CurrencyCode" type="clm54217-N:CurrencyCodeContentType"/>
<!-- ===== Type Definitions ===== —->
<[== ==3
<!-— ===== Code List Type Definition: 4217-N Currency Codes ===== —->
<[== ==3

<xsd:simpleType name="CurrencyCodeContentType">
<xsd:restriction base="xsd:token">
<xsd:enumeration value="840">

XML Naming and Design Rules V3.0 1st Public Review Page 99 of 144

GILILILILILIUILILILIULILILILILIL
OOOOOOOOOOOOOO000O
LA A AL A00000000
~NOXOTRLWNI2OOO~NOOTRWN

LU
OOOOO0OO
NINNNININN
OO~NOOIRW

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<xsd:annotation>
<xsd:documentation>
<CodeName>US Dollar</CodeName>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="978">
<xsd:annotation>
<xsd:documentation>
<CodeName>Euro</CodeName>
</xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

This xsd: choice option allows for the use of code values from different pre-defined
code lists in the instance document. The specific code list being used in the instance
document will be represented by the namespace prefix (c1m54217-A or
clm54217-N) being used for the namespace declaration of the imported code list
and for the CurrencyCode element:

<Invoice .. xmlns:clm54217-N="urn:un:unece:uncefact:codelist:draft:5:4217-N:2001" ..
>
<CalculationCurrencyCode>
<clm54217-N:CurrencyCode>840</clm54217-N:CurrencyCode>
</CalculationCurrencyCode>

</Invoice>

The namespace prefix unambiguously identifies to the recipient of the instance from
which code list each code value is defined.

10.2.2 Union

The xsd:union code list approach is similar to that for the xsd: choice approach
in that multiple code lists are being used. The element declaration in the schema
would be identical to that for choice in that the element
CalculationCurrencyCode is still based on the business data type
bdt:CalculationCurrencyCodeType.

<xsd:element name="CalculationCurrencyCode"
type="qgdt:CalculationCurrencyCodeType" />

The difference is that the bdt:CalculationCurrencyCodeType would be
defined in the BDT XML Schema File using an xsd:union element rather than an
xsd:choice element:

<xsd:simpleType name="CalculationCurrencyCodeType">
<xsd:union memberTypes="clm54217-N:CurrencyCodeContentType
clm54217-A:CurrencyCodeContentType" />
</xsd:simpleType>

This declaration allowes the choice of values to come from either the c1m54217-
N:CurrencyCodeContentType or from the c1m54217-
A:CurrencyCodeContentType. The Common Code List XML Schema File for

XML Naming and Design Rules V3.0 1st Public Review Page 100 of 144

3072

3073
3074
3075
3076
3077
3078

3079
3080

3081
3082

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

clm54217-A:CurrencyCodeContentType is the same as the one used in
Section 9.1.1 above. The Common Code List XML Schema File for c1m54217-
N:CurrencyCodeContentType is the same as the one used in Section 9.1.4.1.

This xsd:union option allows the use of code values from different pre-defined
code lists in the instance document. The code lists must be imported once in the
XML Schema File and must be shown once in the XML instance. The specific code
list will be represented by the namespace prefix (c1m54217-A or c1m54217-N), but
unlike the choice option, the element in the instance document will not have the
specific code list token conveyed as the first part of the element name. The recipient
of the instance does not know unambiguously which code list each code value is
defined. This is because a reference to the specific code lists comes from different
Code List XML Schema Files, such as, c1m54217-N and c1lm54217-A.

In an instance document this element could be represented as:

<Invoice >
<CalculationCurrencyCode>840</CalculationCurrencyCode>

</Invoice>

The advantage of the xsd:union approach is that attributes can make use of these
code lists. For example, it may make sense for an implementation to standardize
across the board on two currency code lists and have those apply to all of the data
types, like bdt : AmountType and its currencylD attribute.

10.3 Restricting the Allowed Code Values

This option is used when it is desired to reduce the number of allowed code values
from an existing code list. For example, a trading partner community may only
recognize certain code values from the 1ISO 4217 Currency Code list. To accomplish
this, create a Restricted Code List XML Schema File that contains the restricted set
of value declarations in the namespace used for the context category that will use
this Code List. This can be accomplished

e By importing the Common Code List XML Schema File and using
xsd:restriction to restrict the values to the set of values required. Or

e By defining directly the set of value required as indicated in section 8.4.3
Restricted Code List XML Schema

XML Naming and Design Rules V3.0 1st Public Review Page 101 of 144

3083

3084
3085

3086
3087

3088
3089

3090
3091
3092

3093
3094
3095

3096
3097
3098

3099
3100

3101
3102
3103

3104
3105
3106

3107
3108
3109

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Appendix A. Related Documents

The following documents provided significant levels of influence in the development
of this document:

UN/CEFACT Core Components Technical Specification Version 3.0 ODP 6
Implementation Verification

UN/CEFACT Core Components Technical Specification, Part 8 of the ebXML
Framework Version 2.01

ebXML Technical Architecture Specification v1.04
OASIS/ebXML Registry Information Model v2.0
ebXML Requirements Specification v1.06

Information Technology - Metadata registries: Framework for the Specification
and Standardization of Data Elements, International Standardization
Organization, ISO 11179-1

Information Technology - Metadata registries: Classification of Concepts for
the Identification of Domains, International Standardization Organization,
ISO 11179-2

Information Technology - Metadata registries: Registry Metamodel,
International Standardization Organization, ISO 11179-3

Information Technology - Metadata registries: Rules and Guidelines for the
Formulation of Data Definitions, International Standardization Organization,
ISO 11179-4

Information Technology - Metadata registries: Naming and Identification
Principles for Data Elements, International Standardization Organization, ISO
11179-5

Information Technology - Metadata registries: Framework for the Specification
and Standardization of Data Elements, International Standardization
Organization, ISO 11179-6

XML Naming and Design Rules V3.0 1st Public Review Page 102 of 144

3110

3111
3112
3113

3114
3115
3116
3117
3118
3119
3120
3121
3122

3123

3124

3125

3126

3127

w
-
N
oo

LU LU LI LI LI LI LI LILILILILILILILILILIL
OGOt GG GGt GGt GGt GGt GGt GGt G Gt Gt Gt Gt Gt 'S
QMIO1I0101I0-E DA DDA DN GOGOIULWOILWOLIGLWLLWIN
PN OO0 UTRULWNOOONOHUTRWN—OW

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Ap

pendix B. Overall Structure

The structure of an UN/CEFACT compliant XML schema must contain one or more
of the following sections as relevant. Relevant sections must appear in the order

given:
e XML Declaration
¢ Schema Module Identification and Copyright Information
e Schema Start-Tag

¢ Includes
e Imports
e Element

e Root Element
e Global Elements

e Type Definitions
B.1 XML Declaration

A UTF-8 encoding is adopted throughout all UN/CEFACT XML schema.

Example B-1: XML Declaration

<?xml version="1.0" encoding="UTF-8"?>

B.2 Schema Module Identification and Copyright Information

Example B-2: Schema Module Identification and Copyright Information

<!-- -—>
<!-- ===== Example - Schema Module Name === ==>
<!-- -—>
<l —=

Schema agency: UN/CEFACT

Schema version: 3.0

Schema date: 03 August 2008

Copyright (C) UN/CEFACT (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to UN/CEFACT, except as needed for the purpose of developing
UN/CEFACT specifications, in which case the procedures for copyrights defined in
the UN/CEFACT Intellectual Property Rights document must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
UN/CEFACT or its successors or assigns.

XML Naming and Design Rules V3.0 1st Public Review Page 103 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3155

3156 This document and the information contained herein is provided on an "AS IS" basis
3157 and UN/CEFACT DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
3158 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
3159 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
3160 PURPOSE.

3161 —

3162 B.3 Schema Start-Tag

3163 The Schema Start-Tag section of an UN/CEFACT compliant XML schema must
3164 contain one or more of the below declarations as relevant. Relevant declarations
3165 must appear in the order given:

3166 e Version

3167 ¢ Namespaces

3168 o targetNamespace attribute

3169 e xmlns:xsd attribute

3170 e namespace declaration for current schema

3171 e namespace declaration for reusable ABIEs actually used in the schema
3172 e namespace declaration for unqualified data types actually used in the schema
3173 e namespace declaration for qualified data types actually used in the schema
3174 e namespace declaration for code lists actually used in the schema

3175 e namespace declaration for identifier schemes actually used in the schema
3176 e namespace declaration for CCTS

3177 e Form Defaults

3178 e elementFormDefault

3179 e attributeFormDefault

3180 e Others

3181 e other schema attributes with schema namespace

3182 e other schema attributes with non-schema namespace

3183 Example B-3: XML Schema Start Tag

3184 <xsd:schema

31 85 targetNamespace="urn:un:unece:uncefact:data:common:1:draft:Examples"

3186 xmlns:rsm="urn:un:unece:uncefact:data:common:1:draft:Examples"

3187 xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

3188 xmlns:com="urn:un:unece:uncefact:data:common:1:draft:"

31 89 xmlns:ids53166="urn:un:unece:uncefact:codelist:common:1997:draft:5:3166-1:1997"

31 90 xmlns:ids53166-2="urn:un:unece:uncefact:codelist:common:1998:draft:5:3166-2:1998"
31 91 xmlns:clm65153="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:5153:D.01C"

31 92 xmlns:clm64405="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:4405:D.01C "

31 93 xmlns:clm69143="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:9143:D.01C "
3194 xmlns:clmPerson Characteristic Code63289="urn:un:unece:uncefact:codelist:common:D.0
3195 1C:draft: 6:3289:D.01C"

31 96 xmlns:clm63479="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:3479:D.01C"

31 97 xmlns:clm63499="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:3499:D.01C"

31 98 xmlns:clml161131="urn:un:unece:uncefact:codelist:common:4031:draft:11:61131:4031"
31 99 xmlns: clm664l1l="urn:un:unece:uncefact:codelist:common:2001:draft:6:6411:2001"

XML Naming and Design Rules V3.0 1st Public Review Page 104 of 144

3207
3208
3209

3210
3211

3212
3213

w
N
-
N

LOLULLILILILILILILILILILILILILILILILILD
NININININININININININININININININNNNY

COGIGILICINININININNNNNN
P ON—=2OO00NOUI-RULWN—OO00~NOUT

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

xmlns:clm54217="urn:un:unece:uncefact:codelist:common:2001:draft:5:4217:2001"
xmlns:clm5639="urn:un:unece:uncefact:codelist:common:1988Ldraft:5:639:1988"
xmlns:clm64437="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:4437:D.01C"

elementFormDefault="qualified"
attributeFormDefault="unqualified">

B.4 Includes

The Include section of an UN/CEFACT compliant XML schema must contain one or
more of the below declarations as relevant. Relevant declarations must appear in the
order given:

¢ Inclusion of the context category specific BIE XML Schema file.
¢ Inclusion of the context category specific BDT XML Schema file.

¢ Inclusion of the context category specific Restricted Code List XML Schema
Files if used

Example B-4: Includes

<l-- >
<!-- ===== TInclude ===== -->
<l-- >
<!-- ===== 1Inclusion of context category BIE XML Schema File ===== —->
<l== ==>

<xsd:include
schemaLocation="http://www.unece.org/uncefact/data/common/1/draft/BusinessInformati
onEntity 1p3p6.xsd"/>
<l-- -——>
Inclusion of context category BDT XML Schema File
<l-- -——>
<xsd:include
schemaLocation="http://www.unece.org/uncefact/data/common/1l/draft/BusinessDataType
1p3p6.xsd"/>
Lll== ==
Inclusion of context category Code List XML Schema File ===== -->

<xsd:include
schemaLocation="http://www.unece.org/uncefact/data/common/1/draft/CodeList 1p3p6.xs
dH/>

B.5 Imports

The Import section of an UN/CEFACT compliant XML Schema File must contain one
or more of the below declarations as relevant. Relevant declarations must appear in
the order given:

e Import of Common Code List XML Schema Files actually used

Example B-5: Imports

Lll== ==3
<!-- ===== TImport of Code lists ===== ——>
Lll== ==3

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:4437:D.01C"
schemaLocation="http://www.unece.org/uncefact/codelist/comon/D.01C/draft/64437 D.01
C.xsd"/>

XML Naming and Design Rules V3.0 1st Public Review Page 105 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:2001l:draft:6:6411:2001"
schemalLocation="
http://www.unece.org/uncefact/codelist/common/2001/draft/66411 2001.xsd"/>
<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:2001l:draft:5:4217:2001"
schemalLocation="
http://www.unece.org/uncefact/codelist/common:2001:draft/54217 2001.xsd"/>
<xsd:import namespace="urn:un:unece:uncefact:codelist:common:1988:draft:5:639-
1:1988"
schemaLocation="http://www.unece.org/uncefact/codelist/common/1998/draft/5639-
1.1988.xsd"/>

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:4031:draft:11:61131:4031"
schemaLocation="http://www.unece.org/uncefact/codelist/common/4031/draft/1161131 40
31.xsd"/>

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:3499:D.01C"
schemaLocation="http://www.unece.org/uncefact/codelist/common/D.01C/draft/63499 D.0
1C.xsd"/>

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:3479:D.01C"
schemaLocation="http://www.unece.org/uncefact/codelist/common/D.01C/draft/63479 D.0
1C.xsd"/>

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:3289:D.01C"
schemaLocation="http://www.unece.org/uncefact/codelist/common/D.01C/draft/63289 D.0
1C.xsd"/>

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:9143:D.01C"
schemaLocation="http://www.unece.org/uncefact/codelist/common/D.01C/draft/69143 D.0
1C.xsd"/>

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:4405:D.01C"
schemaLocation="http://www.unece.org/uncefact/codelist/common/D.01C/draft/64405 D.0
1C.xsd"/>

<xsd:import
namespace="urn:un:unece:uncefact:codelist:common:D.01C:draft:6:5153:D.01C"
schemaLocation="http://www.unece.org/uncefact/codelist/common/D.01C/draft/65153 D.0
1C.xsd"/>

LOUWULLILI LI LI LI LILILILILIUILILILILIUILILILIULILICLILILILILILI LILIULILILILILILD
NINNININININNINININNNNNN
000000000 0000COCONNNNNNNNNNHOOOHOM YT NINOITNININOICI0IO-B
QOO TR LN OO0~ UTRLWN OO 00~ O1-R LN = OO0~ OTR LN OO0

B.6 Elements

w
N
[e]
[{e

3290 The root element is declared first when needed in schema that are used to support
3291 instance documents. Global elements are then declared following the root element
3292 whenitis present.

3293 Example B-6:

3294 <1-- .
3295 <!-- ===== Element Declarations ===== —->
3296 <l-- o
3297 <!-- ===== Root element ————= >
o
2 <xsd:element name="[ELEMENTNAME]" type="[TOKEN] : [TYPENAME]>
Ll== -
3389 <!-- ===== Global Element Declarations ===== —->
3 <xsd:element name="[ELEMENTNAME]" type="[TOKEN] : [TYPENAME]>
3304 <1-- -
3305

XML Naming and Design Rules V3.0 1st Public Review Page 106 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3306 B.7 Root element

3307 The root element's type definition is defined immediately following the definition of
3308 the global root element to provide clear visibility of the root element's type, of which
3309 this particular schema is all about.

3310 Example B-T:
’ <!-- -—>
<!-- ===== Root element ===== -->
<!-- -—>

<xsd:element name="Invoice" type="rsm:InvoiceType">
<xsd:annotation>
<xsd:documentation>
<ccts:UniqueID>UNMO0000001</ccts:UniqueID>
<ccts:Acronym>RSM</ccts:Acronym>
<ccts:Name>Invoice</ccts:Name>
<ccts:Version>1.0</ccts:Version>
<ccts:Description>A document that contains information

directly relating to
the economic event of ordering
products.</ccts:Description>
<ccts:BusinessProcessContextValue>Purchase
Order</ccts:BusinessProcessContextValue>
</xsd:documentation>
</xsd:annotation>
</xsd:element>

OO0 UI-RULWN—=2OWO0O~NOOTRWN—

IUIGILILILIUICILICILICICLICI LI
GIUWLILILILILILILILILILI LI LILILILWLD

3330 Example B-8: Global elements
<l—- -—>
<!-- ===== Global element ===== -=>
<l-- -—>

<xsd:element name="BuyerParty” type="ram:BuyerPartyType”/>

<xsd:annotation>
<xsd:documentation>
<ccts:UniqueID>UNMO0000002</ccts:UniqueID>
<ccts:Acronym>RAM</ccts:Acronym>
<ccts:DictionaryEntryName>Buyer Party. Details</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>The party that buys.</ccts:Definition>
<ccts:0bjectClassTerm>Party<ccts:0ObjectClassTerm>
<ccts:QualifierTerm>Buyer<ccts:QualifierTerm>
</xsd:documentation> </xsd:annotation>
</xsd:element>

CIULILILILILILICILICICLIICILD
GILLILILIULILILICILICLICLICICILD
AL BB LWOILILILWWLW
O1ROWN2OOONOOTRWN—

3346 B.8 Type Definitions

3347 The definition of the BIEs used within the specific XML Schema File or by the XML
3348 Schema Files that make use of a common XML Schema File.

3349 ¢ Definition of types for Basic Business Information Entities in alphabetical
3350 order, if applicable.

3351 o Definition of types for Aggregate Business Information Entities in alphabetical
3352 order, if applicable.

3353 Example B-9: Type Definitions

3354 <l — -
3355 <!-- ===== Type Definitions ===== —->
3356 <l — -
3357 <!-- ===== Type Definition: Account type ===== -->

XML Naming and Design Rules V3.0 1st Public Review Page 107 of 144

COUIUCLILI LI LI LI UICLILIGILI LI LI LU LI LI LI LI LI LI LI LI LICLI LI LICLI LI LI LI LI LI LICLILILICLILICLILILICLILILILILILD

AR ADRMRMRARALALARARALALMRMRARALALARARALAARNRARARALAAERARIAIGWOGLOLOLLWLULWOLILILUIUICLILILIGIUILILILIULILILILILILILI LILILIUILILILIULIULILILILILWLILD
CQOGLLWNININININNINNNN A A2 d O OO OO OO OO O(OOOOOLODOOO 0000000000000 000NN NNNNNNNOYIOHODHOXSHCYOHYOHYOYUIU1

N0~ TR ULWNI OO 00~NOYUT-RULWN OO 00~NOYUTI-RULWN OO 00N U1-R.LWN OO 00N U1-RLWN =2 OO 00N UTRUWNI =2 OO 00N OTRWN OO0

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

€l== ==>
<xsd:complexType name="AccountType">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000001</ccts:UniquelID>
<ccts:Acronym>ABIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account.
Details</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>A business arrangement whereby debits and/or
credits arising from transactions are recorded. This could be with a bank, i.e. a
financial account, or a trading partner offering supplies or services 'on account',
i.e. a commercial account</ccts:Definition>
<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="ID" type="bdt:IDType" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000002</ccts:UniqueID>
<ccts:Acronym>BBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account.
Identifier</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>The identification of a
specific account.</ccts:Definition>
<ccts:Cardinality>0..n</ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>
<ccts:PropertyTerm>Identifier</ccts:PropertyTerm>

<ccts:PrimaryRepresentationTerm>Identifier</ccts:PrimaryRepresentationTerm>
<ccts:BusinessTerm>Account
Number</ccts:BusinessTerm>
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="Status" type="ram:StatusType" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000003</ccts:UniqueID>
<ccts:Acronym>ASBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account.
Status</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>Status information related
to account details.</ccts:Definition>
<ccts:Cardinality>0..n</ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>
<ccts:PropertyTerm>Status</ccts:PropertyTerm>

<ccts:PrimaryRepresentationTerm>Code</ccts:PrimaryRepresentationTerm>
<ccts:AssociatedObjectClassTerm>Status
</ccts:AssociatedObjectClassTerm>

<ccts:AssociationType>Aggregate</ccts:AssociationType>
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="Name" type="bdt:NameType" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000004</ccts:UniquelID>
<ccts:Acronym>BBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account. Name.
Text</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>

XML Naming and Design Rules V3.0 1st Public Review Page 108 of 144

OGO LI LILIUIUIUL LI LI LI LI LI LILI LI LILI LI LI LU LI LI LI LI LI LI LI LI LILIUICLI LILILIULILILILIULICLICLILILILICLILICD
QOIOINICIOICICINBE DR DLA DR RARARALALARARARRARNMRMRARARARMRARALAADRARADRALADRDARARADRRARARADRARRARARRARMRARRARARARARARARARARARRARNRNRARDARDARRADRDRDN
OOOOOOOOOUOOODLOODOOO 0000000000000 000 NNNNNNNNNNOYHO OO YOO OYUINIOIOTIOIIOIVIOINTE A S AN A D BN NI CGI0IGIUWOILI0D
0O~NIOYUI-RULWNI—= OO 00N U1-RULWN OO0 OT-R LN =2 OO0~ TR ULWNI 2 OO OO OTRWNI 2 OO0~ OTRWNI OO 00N TR LWNI OO0 W

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

<ccts:Definition>The text name for a
specific account</ccts:Definition>
<ccts:Cardinality>0..n</ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>
<ccts:PropertyTerm>Name</ccts:PropertyTerm>

<ccts:PrimaryRepresentationTerm>Text</ccts:PrimaryRepresentationTerm>
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="CurrencyCode" type="qgdt:CurrencyCodeType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000005</ccts:UniquelID>
<ccts:Acronym>BBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account.
Currency. Code</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>A code specifying the
currency in which monies are held within the account.</ccts:Definition>
<ccts:Cardinality>0..n</ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>
<ccts:PropertyTerm>Currency</ccts:PropertyTerm>

<ccts:PrimaryRepresentationTerm>Code</ccts:PrimaryRepresentationTerm>
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="TypeCode" type="qdt:AccountTypeCodeType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000006</ccts:UniquelID>
<ccts:Acronym>BBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account. Type.
Code</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>This provides the ability
to indicate what type of account this is (checking, savings,
etc) .</ccts:Definition>
<ccts:Cardinality>0..1l<ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>
<ccts:PropertyTerm>Type</ccts:PropertyTerm>

<ccts:PrimaryRepresentationTerm>Code</ccts:PrimaryRepresentationTerm>
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="Country" type="ram:CountryType" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000007</ccts:UniqueID>
<ccts:Acronym>ASBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account.
Country</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>Country information
related to account details.</ccts:Definition>
<ccts:Cardinality>0..n<ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>
<ccts:PropertyTerm>Country</ccts:PropertyTerm>
<ccts:AssociatedObjectClassTerm>Country
</ccts:AssociatedObjectClassTerm>
<ccts:AssociationType>Aggregate</ccts:AssociationType>

</xsd:documentation>
</xsd:annotation>

XML Naming and Design Rules V3.0 1st Public Review Page 109 of 144

OGO LICILILILILICLILIUICLICLI LI LI OO LI LICLILIULILICLI LI LI LOCLILILICLILICLILILILILILILILICLD
OO ULWNI2OOONOTRLWNI2 OO OTRLWNI OO0~ LN OO 0O~ UTRWNI O

w
n
()]
-_—

I
TOIICICITITITITIIOINIOITITNINIOT
ONNNNNNNNNNOOHODODDN)
SOR~DUTRLN 2 OORSHTHRGN

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

</xsd:element>
<xsd:element name="Person" type="ram:PersonType" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000008</ccts:UniqueID>
<ccts:Acronym>ASBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account.
Person</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>Associated person
information related to account details. This can be used to identify multiple
people related to an account, for instance, the account holder.</ccts:Definition>
<ccts:Cardinality>0..n<ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>

<ccts:PropertyTerm>Person</ccts:PropertyTerm>
<ccts:AssociatedObjectClassTerm>Person
</ccts:AssociatedObjectClassTerm>

<ccts:AssociationType>Aggregate</ccts:AssociationType>
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="Organisation" type="ram:OrganisationType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation xml:lang="en">
<ccts:UniqueID>UN00000009</ccts:UniquelID>
<ccts:Acronym>ASBIE</ccts:Acronym>
<ccts:DictionaryEntryName>Account.
Organisation</ccts:DictionaryEntryName>
<ccts:Version>1.0</ccts:Version>
<ccts:Definition>The associated
organisation information related to account details. This can be used to identify
multiple organisations related to this account, for instance, the account
holder.</ccts:Definition>
<ccts:Cardinality>0..n<ccts:Cardinality>

<ccts:0bjectClassTerm>Account</ccts:0bjectClassTerm>

<ccts:PropertyTerm>Organisation</ccts:PropertyTerm>
<ccts:AssociatedObjectClassTerm>Organisation
</ccts:AssociatedObjectClassTerm>

<ccts:AssociationType>Composition</ccts:AssociationType>
</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

Example B-10: Complete Structure

<?xml version="1.0" encoding="UTF-8"?>

<l== -—>
<!-- ===== [SCHEMA MODULE TYPE] Schema Module ===== —-—>
<l== -—>
< l==
Schema agency: [SCHEMA AGENCY NAME]

Schema version: [SCHEMA VERSION]

Schema date: [DATE OF SCHEMA]

[Code list name:] [NAME OF CODE LIST]

[Code list agency:] [CODE LIST AGENCY]

[Code list version:] [VERSION OF CODE LIST]

[Identifier list name:] [NAME OF IDENTIFIER LIST]

[Identifier list agency:] [IDENTIFIER LIST AGENCY]

[Identifier list version:] [VERSION OF IDENTIFIER LIST]

Copyright (C) UN/CEFACT (2006). All Rights Reserved.

XML Naming and Design Rules V3.0 1st Public Review Page 110 of 144

IO LI LI LI LI LU LI LI LI LI LI LILILICLILICLILIULICLILICLILILILILICD
OXTXCYTHITHOYTITITHIOIOITITYTHXTHITITITYTHTHITITYTHITHIOXSYTHIOHY OISO OIUIUINIOINIUININIOTIONITININIOIOIIOIO
IO LILILILILICINININININNININNN A A A A O OO OO OO OO OODOOLOLOOOOO000000000000000000
O~ UIRLN OO0~ U1 LN~ OO 0O~ OT-R LN = OO 00N OTR GLON = OO 0N TR WN OO 00N 1R WN—

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to UN/CEFACT, except as needed for the purpose of developing
UN/CEFACT specifications, in which case the procedures for copyrights defined in
the UN/CEFACT Intellectual Property Rights document must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
UN/CEFACT or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis
and UN/CEFACT DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

-—>

<xsd:schema
targetNamespace="urn:un:unece:uncefact:data:draft: [MODULENAME] : [VERSION"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

. FURTHER NAMESPACES ...

elementFormDefault="qualified" attributeFormDefault="unqualified">

<l== -—>
<!-- ===== 1Include ===== —-=>
<!-- -—>
<!-— ===== Inclusion of [TYPE OF MODULE] ===== ——>
Lll== ==
<xsd:include schemalocation=".."/>
€l== ==
<!-- ===== TImports ===== -->
Lll== ==
<!-- ===== TImport of [TYPE OF MODULE] ===== —-=>
Lll== ==
<xsd:import namespace=".." schemalocation=".."/>
€l== ==
<!-- ===== Element Declarations ===== —->
Lll== ==
<!-- ===== Root element ===== —-=>
<!-- -—>
<xsd:element name="[ELEMENTNAME]" type="[TOKEN]: [TYPENAME]>
<l== -—>
<!-- ===== Global Element Declarations ===== —->
<!-- -—>
<xsd:element name="[ELEMENTNAME]" type="[TOKEN] : [TYPENAME]>
<l== -—>
<!-- ===== Type Definitions ===== —->
<!-- -—>
<!-- ===== Type Definition: [TYPE] ===== —->
<!-- -—>

<xsd:complexType name="[TYPENAME] ">
<xsd:restriction base="xsd:token">
see type definition
</xsd:restriction>
</xsd:complexType>
</xsd:schema>

XML Naming and Design Rules V3.0 1st Public Review Page 111 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3639 Appendix C. ATG Approved Acronyms and Abbreviations

3640 The following constitutes a list of ATG approved acronyms and abbreviations which
3641 must be used within tag names when these words are part of the dictionary entry
3642 name:

3643 ABIE — Aggregate Business Information Entity
3644 ACC — Aggregate Core Components
3645 BBIE — Basic Business Information Entity
3646 BCC — Basic Core Component

3647 BDT — Business Data Type

3648 BIE — Business Information Entity

3649 CC — Core Components

3650 ID - Identifier

3651 URI - Uniform Resource Identifier

3652 URL - Uniform Resource Locators

3653 URN — Uniform Resource Name

3654 UUID — Universally Unique Identifier

XML Naming and Design Rules V3.0 1st Public Review Page 112 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07
3655 Appendix D. Core Component XML Schema File

3656 The Core Component XML Schema File is published as a separate file —
3657 CoreComponentType_ 3p0.xsd.

XML Naming and Design Rules V3.0 1st Public Review Page 113 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07
3658 Appendix E. Business Data Type XML Schema File

3659 The Business Data Type XML Schema File is published as a separate file —
3660 BusinessDataType 3p0.xsd.

XML Naming and Design Rules V3.0 1st Public Review Page 114 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3661 Appendix F. Annotation Templates

3662
3663

XML Naming and Design Rules V3.0 1st Public Review Page 115 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3664 Appendix G. Mapping of CCTS Representation Terms to
3665 CCT and BDT Data Types
3666 The following table represents the mapping between the representation terms as
3667 defined in CCTS and their equivalent data types as declared in the CCT schema
3668 module and the BDT schema module.
Representation Data Type for CCT | Data Type for BDT
Term
Amount xsd:decimal xsd:decimal
Binary Object xsd:base64Binary | xsd:base64Binary
Graphic xsd:base64Binary
Sound xsd:base64Binary
Video xsd:base64Binary
Code xsd:token xsd:token
Date Time xsd:string xsd:dateTime
Date xsd:date
Time xsd:time
Identifier xsd:token xsd:token
Indicator xsd:string xsd:boolean
Measure xsd:decimal xsd:decimal
Value xsd:decimal
Percent xsd:decimal

XML Naming and Design Rules V3.0 1st Public Review Page 116 of 144

3669

XML Naming and Design Rules V3.0 1st Public Review

Rate xsd:decimal
Numeric xsd:string xsd:decimal
Quantity xsd:decimal xsd:decimal
Text xsd:string xsd:string

Name xsd:string

XML Naming and Design Rules V3.0 1st Public Review

2008-08-07

Page 117 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3670 Appendix H. Naming and Design Rules List

3671

Rule ID Rule Text

uonjeziiobajen

Conformance SHALL be determined through adherence to the content of
the normative sections and rules. Furthermore each rule is categorized to
indicate the intended audience for the rule by the following:

Rule Categorization

ID|Description

1 |Rules which must not be violated by individual organizations else
conformance and interoperability is lost — such as named types.

2 |Rules which may be tailored for individual organizations while still
conformant to the NDR structure — such as namespace string
contents and namespace tokens.

3 |Rules which may be modified by individual organizations while still
[R B998] conformant to agreed upon data models — such as the use of global
or local element declarations.

4 |Rules that if violated loose conformance with the CEFACT
data/process model — such as xsd: redefine, xsd:any, and
xsd:substitutionGroups.

5 |Rules that relate to extension that are not used by UN/CEFACT and
have specific restrictions on their use by other than CEFACT
organizations.

6 [Rules that relate to extension that are determined by specific
organizations.

7 |Rules that can be modified while not changing instance validation
capability.

All XML Schema design rules MUST be based on the W3C XML Schema
[R 8059] | Recommendations: XML Schema Part 1: Structures Second Edition and
XML Schema 1.1 Part 2: Datatypes.

XML Naming and Design Rules V3.0 1st Public Review Page 118 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

All conformant XML instance documents MUST be based on the W3C

[R 935C] suite of technical specifications holding recommendation status.
XML Schema MUST follow the standard structure defined in Appendix B
[R 9224] .
of this document.
[R AE2] Each element or attribute XML name MUST have one and only one fully
qualified XPath (FQXP).
Element, attribute and type names MUST be composed of words in the
[R AA92] | English language, using the primary English spellings provided in the
Oxford English Dictionary.
[R9956] | LowerCamelCase (LCC) MUST be used for naming attributes.
[R A781] | UpperCamelCase (UCC) MUST be used for naming elements and types.
Element, attribute and type names MUST be in singular form unless the
[R 8D9F] : ;
concept itself is plural.
Element, attribute and type names MUST be drawn from the following
[R BFBO])
character set: a-z and A-Z.
XML element, attribute and type names constructed from dictionary entry
[R AB19] | names MUST NOT include periods, spaces, or other separators; or
characters not allowed by W3C XML 1.0 for XML names.
XML element, attribute and type names MUST NOT use acronyms,
[R 9009] | abbreviations, or other word truncations, except those included in the
defining organizations list of approved acronyms and abbreviations.
[R BFAQ] The acronyms and abbreviations listed by the defining organization
MUST always be used in place of the word or phrase they represent.
Acronyms MUST appear in all upper case except for when the acronym is
[R9100] | the first set of characters of an attribute in which case they will be all
lower case.
Empty elements MUST NOT be used, except when their definition include
[R B8B6] | an identifier attribute that serves to reference another element via
schema identity constraints.
Each organization’s XML Schema components MUST be assigned to a
[R 984C] o
namespace for that organization.
The XML Schema namespaces MUST use the following pattern:
[R 8E2D] URN | urn:<organization>:<org hierarchy>[:<org

hierarchy level>]*:<schematype>:<context
category>:<major>:<status>

XML Naming and Design Rules V3.0 1st Public Review Page 119 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

URL | http://<organization>/<org

: hierarchy>[/<org hierarchy
level>] */<schematype>/context
category/<major>/<status>

Where:

e organization — An identifier of the organization providing the
standard.

e org hierarchy — The first level of the hierarchy within the
organization providing the standard.

e org hierarchy level — Zero to n level hierarchy of the organization
providing the standard.

e schematype — A token identifying the type of schema module:
data|codelist|documentation

e context category — The context category [business process] for
UN/CEFACT from the UN/CEFACT catalogue of common
business processes. Other values may be used by the other
organizations.

e major — The major version number

o status — The status of the schema as: draft|standard.

UN/CEFACT namespaces MUST be defined as Uniform Resource

[R 8CED] Names.
R B56B] Published namespace content MUST NOT be changed unless such
change does not break backward compatibility.
The XML Schema file name for files other than code lists MUST be of the
[R 92B8] | form <SchemaModuleName>_ <Version>.xsd, with periods, spaces, or
other separators and the words XML Schema File removed.
When representing versioning schemes in file names, the period MUST
[R 8D58]
be represented by a lowercase p.
R B387] Every XML Schema file MUST have a namespace declared, using the
xsd:targetNamespace attribute.
A Root XML Schema file MUST be created for each unique business
[R9354] |. .
information payload.
Each Root XML Schema File MUST be named after the
[R B3E4] | <BusinessInformationPayload> XML Schema File in the documentation
within the XML Schema File.
R 9961] | A Root XML Schema file MUST NOT replicate reusable constructs

available in XML Schema files that can be referenced through

XML Naming and Design Rules V3.0 1st Public Review Page 120 of 144

XML Naming and Design Rules V3.0 1st Public Review

2008-08-07

xsd:include.

[R AA56]

A Business Data Type XML Schema File MUST be created within each
context category based namespace.

[R 847C]

The bdt:BusinessDataType XML Schema File MUST be named 'Business
Data Type XML Schema File’ in the documentation within the XML
Schema File.

[R 8238]

One Business Information Entity XML Schema Files MUST be created for
the context category that is expressed in the namespace.

[R 8252]

The BusinessInformationEntity XML Schema file MUST be named
'‘Business Information Entity XML Schema File’ by placing the name
within the Header documentation section of the file.

[R BD2F]

A Restricted Code Lixt XML Schema File MUST be created for each
restricted code list used by a BDT.

[R 942D]

Each Restricted Code List XML Schema File MUST contain enumeration
values for both the actual codes and the code values.

[R AG2F]

Each Restricted Code List XML Schema File MUST be given a unique
name within the namespace it belongs.

[R 8A68]

Cases where code lists are used within the XML Schema, a Code List
XML Schema file MUST be created to convey code list enumerations for
each code list being used.

[R B443]

Each Common Code List XML Schema File must be given a unique
name that represents the name of the code list and is unique within the
namespace it belongs.

[R BOAD]

The name of each clm:CodeList XML Schema File as defined in the
comment within the XML Schema File MUST be of the form:

<Code List Agency ldentifier|Code List Agency Name><Code List
Identification Identifier|Code List Name>" - Code List XML Schema File”

Where:

o Code List Agency ldentifier — Identifies the agency that maintains
the code list

o Code List Agency Name — Agency that maintains the code list

o Code List Identification Identifier — Identifies a list of the respective
corresponding codes

¢ Code List Name — The name of the code list as assigned by the
agency that maintains the code list.

[R B564]

Imported XML Schema Files MUST be fully conformant to category 1, 2,
3, 4 and 7 rules as defined in Rule B998.

XML Naming and Design Rules V3.0 1st Public Review

Page 121 of 144

XML Naming and Design Rules V3.0 1st Public Review

2008-08-07

[R 9733]

Imported XML Schema File components MUST be derived using these
NDR rules from artifacts that are fully conformant to the latest version of
the UN/CEFACT Core Components Technical Specification.

[R 8F8D]

Each xsd:schemalLocation attribute declaration MUST contain a
resolvable URL. This may include a relative path reference from the
location of the current XML Schema file.

[R BF17]

The xsd:schema version attribute MUST always be declared.

[R 84BE]

The xsd:schema version attribute MUST use the following template:
<xsd:schema ... version="Draft” | "Standard”

” 9 [l]

_<major>"p”"<minor>["p”<revision>]">

Where:
e Draft | Standard — is used based upon the status.
e <major> - sequential number of the major version.
e <minor> - sequential number of the minor version

e <revision> - optional sequential number of the revision.

[R 9049]

Every XML Schema file major version number MUST be a sequentially
assigned incremental integer greater then zero.

[R A735]

Minor versioning MUST be limited to declaring new optional XML content,
extending existing XML content, or refinements of an optional nature.

[R AFAS]

Minor versions MUST NOT rename existing XML Schema defined
artifacts.

[R BBD5]

Changes in minor versions MUST NOT break semantic compatibility with
prior versions having the same major version number.

[R 998B]

XML Schema files for a minor version XML Schema MUST incorporate all
XML Schema components from the immediately preceding version of the
XML Schema file.

[R 8DB4]

The first line in an XML Schema file MUST contain:

“<?xml version="1.0" encoding="UTF-8"?>"

[R ABD2]

Every XML Schema File MUST contain a comment that identifies its
name immediately following the XML declaration.

[R BD41]

Every XML Schema File MUST contain a comment that identifies its
owning agency, version and date immediately following the schema name
comment using the format defined in Appendix B-2.

[R AOES5]

The xsd:elementFormDefault attribute MUST be declared and its value
set to qualified.

XML Naming and Design Rules V3.0 1st Public Review

Page 122 of 144

XML Naming and Design Rules V3.0 1st Public Review

2008-08-07

The xsd:attributeFormDefault attribute MUST be declared and its value

[R ASCS] set to unqualified. 1
The xsd prefix MUST be used in all cases when referring to the
[R9B18] | namespace http://www.w3.0rg/2001/XMLSchema as follows: 1
xmins:xsd=http://www.w3.0rg/2001/XMLSchema.
[R 90F 1] All required CCTS metadata for ABIEs, BBIEs, ASBIEs, and BDTs must 1
be defined in an XML Schema file.
The name of the CCTS Metadata XML Schema file will be “Core
[R9623] | Components Technical Specification Schema File” and will be defined 1
within the comment within the XML Schema file.
The CCTS Metadata XML Schema File MUST reside in its own
[R 9443] | namespace which MUST be defined in accordance with rule 8E2D and 1
assigned the prefix ccts.
[R AD26] | xsd:notation MUST NOT be used. 1
[R ABFF] | The xsd:any element MUST NOT be used. 4,6
[R AEBB] | The xsd:any attribute MUST NOT be used. 4,6
[R9859] | Mixed content MUST NOT be used. 1
[R926D] | xsd:substitutionGroup MUST NOT be used. 4,6
[R 8A83] | xsd:ID/xsd:IDREF MUST NOT be used. 1
[R 8E89] | xsd:key/xsd:keyref MUST be used for element referencing. 1
Supplementary component information MUST be represented as
[R B221] : 1
Attributes.
[R AFEE] User defined attributes MUST only be used for Supplementary 1
components.
Attributes MUST be used rather than elements to serve as identifiers
[R 8EE7] | when two elements need to be related to one another via schema identity | 1
constraints.
An xsd:attribute that represents a supplementary component with variable
[R9OFEC] | information MUST be based on an appropriate XML Schema built-in 1
simpleType.
A xsd:attribute that represents a supplementary component which uses
[R B2E8] | codes MUST be based on the xsd:simpleType of the appropriate code 1
list.
[R 84A6] | A xsd:attribute that represents a supplementary component which uses 1

XML Naming and Design Rules V3.0 1st Public Review

Page 123 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

identifiers MUST be based on the xsd:simpleType of the appropriate
identifier scheme.

Every BBIE leaf element declaration MUST be of the BusinessDataType

[R BCD6] | that represents the source basic business information entity (BBIE) data 1
type.
[R 8337] | The xsd:nillable attribute MUST NOT be used. 1
[R 8608] | Anonyms types MUST NOT be used. 1
[R A4CE] | An xsd:complexType MUST be defined for each CCTS BIE. 1
[R BC3C] An xsd:complexType MUST be defined for each CCTS BDT that cannot 1
be fully expressed using an xsd:simpleType.
[R A010] | The xsd:all element MUST NOT be used. 1
[R AB3F] xsd:extension MUST only be used in the Business DataType XML 46
Schema file.
[R 9D6E] xsd:extension MUST only be used for declaring xsd:attributes to 46
accommodate relevant supplementary components.
When xsd:restriction is applied to a xsd:simpleType or xsd:complexType
[R 8AF7] | that represents a data type the derived construct MUST use a different 1
name.
R 847A] Each defined or declared construct MUST use the xsd:annotation 1
element for required CCTS documentation.
Usage rules whose ccts:ConstraintType is something other than
[R 88DE] | “unstructured” MUST be expressed within a ccts:UsageRule element 1
within an xsd:documentation element.
The structure of the ccts:ConstraintType element MUST be:
e ccts:UniquelD [1..1]
e ccts:Constraint [1..1]
[R B831] e ccts:ConstraintType [1..1] 1
e ccts:ConditionType [1..1
e ccts:Name [0..1]
e ccts:BusinessTerm [0..*]
Usage rules whose ccts:ConstraintType is unstructured MUST be
[R A1CF] | expressed within a ccts:UsageRule element within an xsd:documentation | 1
element.
[R B96F] | The Root XML Schema file MUST be assigned to a unique namespace 1

XML Naming and Design Rules V3.0 1st Public Review Page 124 of 144

XML Naming and Design Rules V3.0 1st Public Review

2008-08-07

token that represents the context category value it is intended.

[R B698]

The Root XML Schema file MUST include the XML Schema files that are
in the same namespace as the Root XML Schema file:

e BIE XML Schema file
¢ BDT XML Schema file

[R ACBD]

A Root Schema in one namespace that is dependent upon type
definitions or element declarations defined in another namespace MUST
NOT import XML Schema Files from that namespace.

[R BDYF]

A global element known as the root element, representing the business
information payload, MUST be declared in the Root XML Schema File.

[R A466]

The name of the root element MUST be the name of the business
information payload with separators and spaces removed.

[R 8062]

The root element declaration MUST be defined using xsd:complexType
that represents the definition of the business information payload.

[R 8837]

Each Root XML Schema File MUST define a xsd:complexType that fully
describes the business information payload.

[R9119]

The name of the root schema xsd:complexType MUST be the name of
the root element with the word “Type’ appended.

[R BA43]

For each referenced ABIE element one xsd:unique constraint involving
the identifier attribute of the referenced element MUST be declared in the
schema, under the scoping element.

[R B40C]

The name of the xsd:unique constraint MUST be composed as follows:
“<Scoping Element Name Text><Referenced Element Name Text>Key”

So that the name is unique in the schema. This declaration will guarantee
uniqueness of the identifier attribute values across all referenced
elements of the same name, in the given scope.

Where:

e Scoping Element Name Text — is the element name within XML
document hierarchy which a closed set of reference is defined.

¢ Referenced Element Name Text — is the element name within the
scoping element being referenced.

[R AC2D]

For each referenced element in a given scope one xsd:keyref constraint
involving the reference attribute that point to the referenced element
MUST be declared in the XML Schema, under the scoping element.

[R 9BES]

Since the XML Schema will specify which parent element can contain the
reference attribute, there MUST only be one xsd:keyref constraint

XML Naming and Design Rules V3.0 1st Public Review

Page 125 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

declared for all the elements where the reference attribute may occur.

[R 858D]

The name of the xsd:keyref constraint MUST conventionally be
composed as follows:

“<Scoping Element Name Text><Reference Attribute Name Text>"
So that the name is unique in the schema where:

e Scoping Element Name Text — is the element name within XML
document hierarchy which a closed set of reference is defined.

o Reference Attribute Name Text — is the element name within the
scoping element being referenced.

[R 886A]

Uniqueness of @key attributes that are not involved in structural
referencing MUST NOT be enforced by the schema via identity
constraints. Uniqueness of @key attributes should be assured by use of
adequate algorithms for the generation of the identifiers (e.g. UUIDs).

[R 8010]

The Root XML Schema File root element declaration MUST have a
structured set of annotations documentation present in that includes:

¢ UniquelD (mandatory): The identifier that references the business
information payload instance in a unique and unambiguous way.

e VersionlD (mandatory): The identifier that reference the version of
the business information payload instance.

o CCTSArtifact (mandatory): The code of the type of component. In
this case the value will always be RSM.

¢ Name (mandatory): The name of the business information
payload.

o Definition (mandatory): A brief description of the business
information payload.

e BusinessTermName (mandatory): The business term name that
the payload object is known by.

[R 8FEZ]

The Business Information Entity XML Schema file MUST include the
Business Data Type XML Schema File that resides in the same
namespace.

[R AF95]

For every object class (ABIE) identified in the corresponding syntax-
neutral model, a named xsd:complexType MUST be defined.

[R9D83]

The name of the ABIE xsd:complexType MUST be the
ccts:DictionaryEntryName: with the spaces and separators removed,
approved abbreviations and acronyms applied and with the ‘Details’ suffix
replaced with ‘Type’.

[R9OC70]

Every aggregate business information entity (ABIE) xsd:complexType
definition content model MUST use zero or more xsd:sequence and/or
zero or more xsd:choice elements to reflect each property (BBIE or

XML Naming and Design Rules V3.0 1st Public Review Page 126 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

ASBIE) of its class.

[R81F0] | Repeating series of only xsd:sequence MUST NOT occur.

[R 8FA2] | Repeating series of only xsd:choice MUST NOT occur.
The order and cardinality of the elements within an ABIE

[R9O0F9] | xsd:complexType MUST be according to the structure of the ABIE as
defined in the model.
Every aggregate business information entity (ABIE) xsd:complexType

[R 8EA2] | definition MUST contain an optional “key” attribute that MAY be used as
the complex element identifier in a message instance.

[R 92C0] The “key” attribute MUST be locally define on the ABIE xsd:complexType
definition. “key” MUST be a reserved attribute name.

[R 8A37] | Every “key” local attribute MUST be of the type xsd:token.

[R 9DAQ] | For each ABIE, a named xsd:element MUST be globally declared.
The name of the ABIE xsd:element MUST be the

[R9A25] | ccts:DictionaryEntryName with the separators and ‘Details’ suffix
removed and approved abbreviations and acronyms applied.

[R B27B] Every ABIE global element declaration MUST be of the xsd:complexType
that represents the ABIE.
For every attribute of an object class (BBIE) identified in an ABIE, a

[R 89A6] | named xsd:element MUST be locally declared within the
xsd:complexType representing that ABIE.
Each BBIE element name declaration MUST be the property term and

[R AEFE] | qualifiers and the representation term of the basic business information
entity (BBIE).
Each BBIE element name declaration where the word ‘identification’ is

[R96D9] | the final word of the property term and the representation term is
‘identifier’, the term ‘identification’ MUST be removed.
Each BBIE element name declaration where the word ‘indication’ is the

[R9A40] | final word of the property term and the representation term is ‘indicator’,
the term ‘indication’ MUST be removed from the property term.
If the representation term of a BBIE is ‘text’, ‘text’ MUST be removed from

[R A34A] "
the name of the element or type definition.

[R 9025] For every ASBIE whose ccts:AggregationKind is a composition, a named
xsd:element MUST be locally declared.

[R AO8A] | For each locally declared ASBIE, the element name MUST be the ASBIE

XML Naming and Design Rules V3.0 1st Public Review Page 127 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

property term and qualifier term(s) and the object class term and qualifier
term(s) of the associated ABIE.

[R B27C]

For each locally declared ASBIE, the element declaration MUST use the
xsd:complexType that represents its associated ABIE.

[R 9241]

For every ASBIE whose AggregationKind is shared, where the
association is implemented as a nested property, the globally declared
element for the associated ABIE MUST be referenced using xsd:ref.

[R B78E]

Every ASBIE whose AggregationKind is not a composition, and where the
association must be implemented as a referenced property, an equivalent
referencing element pointing to the associated ABIE MUST be locally
declared.

[R AEDD]

The equivalent referencing element MUST have a name composed of the
ASBIE property term and property qualifier term(s).

[R B173]

For each equivalent referencing element a xsd:complexType MUST be
declared. Its structure will be an empty element with a local attribute.

[R B523]

The name of the local attribute that is part of the empty element MUST be
composed of the object class term and object qualifier term(s) of the ABIE
being referenced, followed by the suffix ‘Reference’.

[R 8BOE]

The name of the xsd:complexType representing the equivalent
referencing element MUST be composed of the object class term and
object qualifier term(s) of the ABIE being referenced, followed by the
suffix ‘ReferenceType’.

[R B7D6]

Each equivalent referencing element MUST be of the xsd:complexType
that relates to the ABIE being referenced.

[R ACBY]

For every ABIE xsd:complexType definition a structured set of
annotations MUST be present in the following pattern:

¢ UniquelD (mandatory): The identifier that references an ABIE
instance in a unique and unambiguous way.

¢ VersionID (mandatory): An identifier of the evolution over time of
an ABIE instance.

o CCTSArtifact (mandatory): The code of the type of component. In
this case the value will always be ABIE.

¢ DictionaryEntryName (mandatory): The official name of an ABIE.
¢ Definition (mandatory): The semantic meaning of an ABIE.

¢ ObjectClassName (mandatory): The Object Class Name of the
ABIE.

o UsageRule (optional, repetitive): Indicates the Usage Rule of the
Object.

XML Naming and Design Rules V3.0 1st Public Review Page 128 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

[R 88B6]

For every ABIE xsd:element declaration definition, a structured set of
annotations MUST be present in the following pattern:

UniquelD (mandatory): The identifier that references an ABIE
instance in a unique and unambiguous way.

VersionID (mandatory): An identifier of the evolution over time of
an ABIE instance.

CCTSArtifact (mandatory): The abbreviation code of the type of
component. In this case the value will always be ABIE.

DictionaryEntryName (mandatory): The official name of an ABIE.
Definition (mandatory): The semantic meaning of an ABIE.

ObjectClassName (mandatory): The Object Class Name of the
ABIE.

UsageRule (optional, repetitive): Indicates the Usage Rule of the
Object.

[R BSBE]

For every BBIE xsd:element declaration a structured set of annotations
MUST be present in the following pattern:

UniquelD (mandatory): The identifier that references a BBIE
instance in a unique and unambiguous way.

VersionID (mandatory): An indication of the evolution over time of
a BBIE instance.

SequencingKeylD (mandatory): Identifier of the sequence of the
BBIE in the containing ABIE.

CCTSArtifact (mandatory): The code of the type of component. In
this case the value will always be BBIE.

DictionaryEntryName (mandatory): The official name of the BBIE.
Definition (mandatory): The semantic meaning of the BBIE.

Cardinality (mandatory): Indication whether the BIE Property
represents a not-applicable, optional, mandatory and/or repetitive
characteristic of the ABIE.

ObjectClassQualifierName (optional): Qualifies the Object Class
Name of the parent ABIE.

ObjectClassName (mandatory): The Object Class Name of the
parent ABIE.

PropertyQualifierName (mandatory): Qualifies the Property Term
of the BBIE.

PropertyTermName (mandatory): The Property Term Name of the
BBIE.

RepresentationTermName (mandatory): Representation term.

UsageRule (optional, repetitive): Indicates the Usage Rule of the

XML Naming and Design Rules V3.0 1st Public Review Page 129 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Object.

e BusinessTermName (optional, repetitive): A synonym term under
which the BBIE is commonly known and used in the business.

o Example (optional, repetitive): Example of a possible value of a
BBIE.

[R 926A]

For every ASBIE xsd:element declaration a structured set of annotations
MUST be present in the following pattern:

¢ UniquelD (mandatory): The identifier that references an ASBIE
instance in a unique and unambiguous way.

e VersionlD (mandatory): An indication of the evolution over time of
the ASBIE instance.

e SequencingKeylD (mandatory): Identifier of the sequence of the
ASBIE in the containing ABIE.

o CCTSArtifact (mandatory): The code of the type of component. In
this case the value will always be ASBIE.

¢ DictionaryEntryName (mandatory): The official name of the ASBIE.
¢ Definition (mandatory): The semantic meaning of the ASBIE.

e Cardinality (mandatory): Indication whether the ASBIE Property
represents a not-applicable, optional, mandatory and/or repetitive
characteristic of the ABIE.

¢ ObjectClassQualifierName (optional): A term that qualifies the
Object Class Name of the associating ABIE.

o UsageRule (optional, repetitive): Indicates the Usage Rule of the
Object.

[R 8EOD]

The BusinessDataType XML Schema file MUST include the
RestrictedCodelList XML Schema files that are defined in the same
namespace.

[R B4CO0]

The BusinessDataType XML Schema file MUST import the
CommonCodeList XML Schema files that it makes use of in the definition
of the BDTs.

[R AEOQ]

Each CCTS BDT artifact within the UN/CEFACT Data Type Catalogue
MUST be defined as an xsd:simpleType or xsd:complexType.

[R 973C]

The name of a business data type MUST be its dictionary entry name
with separators and spaces removed.

[R 80FD]

Every restricted Business Data Type XML Schema Component xsd:type
definition MUST be derived from its base type using xsd:restriction unless
a non-standard variation from the base type is required.

[R A9F6]

Every restricted Business Data Type XML Schema Component xsd:type

XML Naming and Design Rules V3.0 1st Public Review Page 130 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

definition requiring a non-standard variation from its base type MUST be
derived from the BDT TextType XML Schema component.

[R AAGO]

Every business data type based on a single codelist xsd:simpleType
MUST contain one of the following:

e xsd:restriction element with the xsd:base attribute set to the code
lists defined simple type with appropriate namespace qualification
or

e xsd:union element with, the xsd:base attribute set to the code list
defined simple type and the xsd:member type attribute set to the
code list defined simple types with appropriate namespace
qualification.

[R AAD1]

Every business data type that has a choice of two or more code lists
MUST be defined as one of the following:

e A xsd:complexType that contains the xsd:choice element whose
content model consists of element references for the alternative
code lists to be included with appropriate namespace qualification

e A xsd:simpleType that contains the xsd:union element whose
xsd:memberType includes the simpleType definitions of the
alternative code lists to be included with appropriate namespace
qualification.

[R 8B3D]

Global xsd:element declarations MUST NOT occur in the BDT XML
Schema File.

[R B340]

Global xsd:attribute declarations MUST NOT occur in the BDT XML
Schema File.

[R ACA7]

Local xsd:attribute declarations MUST only represent CCTS
Supplementary Components for the Business Data Type for which they
are being declared.

[R BFES5]

Every business data type definition MUST contain a structured set of
annotation documentation in the following sequence and pattern:

e UniquelD (mandatory): The identifier that references a Business
Data Type instance in a unique and unambiguous way.

¢ VersionID (mandatory): An indication of the evolution over time of
the Business Data Type instance.

o CCTSArtifact (mandatory): The code of the type of component. In
this case the value will always be BDT.

e DictionaryEntryName (mandatory): The official name of the
Business Data Type.

o Definition (mandatory): The semantic meaning of the Business
Data Type.

XML Naming and Design Rules V3.0 1st Public Review Page 131 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

DataTypeQualifierName (mandatory): A name that qualifies the
Representation Term in order to differentiate it from its underlying
Core Data Type and other Business Data Type.

DataTypeName (mandatory): Name of the DataType.

PrimitiveTypeCode (mandatory): The primitive data type of the
Business Data Type.

UsageRule (optional, repetitive): Indicates the Usage Rule of the
Object.

BusinessTermName (optional, repetitive): A synonym term under
which the BDT is commonly known and used in the business.

Example (optional, repetitive): Example of a possible value of a
Business Data Type.

[R 9C95]

For every supplementary component xsd:attribute declaration a
structured set of annotation documentations MUST be present in the
following pattern:

UniquelD (mandatory): The identifier that references a
Supplementary Component of a Core Component Type instance in
a unique and unambiguous way.

VersionID (mandatory): An indication of the evolution over time of
the BDT Supplementary Component instance.

SequencingKeylD (mandatory): Identifier of the sequence of the
BDT Supplementary Component.

CCTSArtifact (mandatory): The type of component. In this case the
value will always be BDTSC.

DictionaryEntryName (mandatory): The official name of the ASBIE.
Definition (mandatory): The semantic meaning of the ASBIE.
DataTypeQualifierName (mandatory):

DataTypeName (mandatory):

PropertyTermName (mandatory): The Property Term Name of the
associated Supplementary Component.

RepresentationTermName (mandatory):
PrimitiveTypeCode (mandatory):

UsageRule (optional, repetitive): Indicates the Usage Rule of the
Object.

BusinessTermName (optional, repetitive): A synonym term under
which the BDT is commonly known and used in the business.

Example (optional, repetitive): Example of a possible value of a
Supplementary Component.

XML Naming and Design Rules V3.0 1st Public Review Page 132 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Each UN/CEFACT maintained code list MUST be defined in its own XML

[R 9E40] Schema file.
The schema module file name for code lists and identifier lists, MUST be
of the form:
<Agency Identifier | Agency Name Text>_<List Identification Identifier |
List Name Text>_<Version ldentifier>.xsd
All periods, spaces, or other separators are removed except for the “.”
before xsd and the “ " between the names.
Where:
R 849E ¢ Agency ldentifier = identifies the agency that manages the list. The
[] default agencies used are those from DE 3055 but roles defined in
DE 3055 cannot be used.
¢ Agency Name Text = the name of the agency that maintains the
list.
o List Identification Identifier = identifies a list of the respective
corresponding codes or ids.
e List Name Text = the name of a list of codes.
¢ Version Identifier = identifies the version.
The XML Schema namespaces for code list XML Schema files MUST
use the following pattern:
URN | urn:<organization>:<org hierarchy> *[:<org
: hierarchy level
n>] :codelist:common:<major>:<status>:<name
>
URL | http://<organization>/<org
: hierarchy>*[/<org hierarchy level
n>] /codelist/common/<major>/<status>/<name
>
[R 992A]

Where:
e organization — Identifier of the organization providing the standard.

e org hierarchy — The first level of the hierarchy within the
organization providing the standard.

e org hierarchy level — Zero to n level hierarchy of the organization
providing the standard.

e codelist — A fixed value token for common codelists.
e common — A fixed value token for common codelists.

e major — The Major version number of the codelist.

XML Naming and Design Rules V3.0 1st Public Review Page 133 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

o status — The status of the schema as: draft|standard

e name — The name of the XML Schema file (using upper camel
case) with periods, spaces, or other separators and the words
‘schema module’ removed.

o Code list names are further defined as: <Code List Agency
Identifier|Code List Agency Name Text> ><divider><Code
List Identification Identifier|Code List Name Text>

= Where:

o Code List Agency ldentifier — is the identifier
for the agency that code list is from.

o Code List Agency Name Text — is the text of
the name that the code list is from.

e Divider — the divider character for URN is ‘’
the divider character for URL is /.

e Code List Identification Identifer — is the
identifier for the given code list.

e Code List Name Text — is the text of the name
for the code list.

Each UN/CEFACT maintained Common Code list XML Schema File
MUST be represented by a unique token constructed as follows:

clm[<Business data type name>]<Code List Agency Identifier|Code List
Agency Name Text><Code List Identification Identifier| Code List Name
Text>

Where any repeated words are eliminated.

e Business Data Type Name — is the name of the business data type
in the business data type XML Schema file.

[R 9FD1]
e Code List Agency ldentifier — is the identifier for the agency that
code list is from.
e Code List Agency Name Text — is the text of the name that the
code list is from.
e Code List Identification Identifier — is the identifier for the given
code list.
e Code List Name Text — is the text of the name for the code list.
R 86C8] Common Code List XML Schema files MUST NOT import or include any
other XML Schema Files.
[R ASEF] In each Common Code List XML Schema File one, and only one, named
xsd:simpleType MUST be defined for the content component.
[R 92DA] | Ineach Common Code List XML Schema File the name of the

xsd:simpleType MUST be the name of code list root element with the

XML Naming and Design Rules V3.0 1st Public Review Page 134 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

word ‘ContentType’ appended.

[R B40B]

In each Common Code List XML Schema File the xsd:restriction element
base attribute value MUST be set to xsd:token.

[R 962C]

Each code in a Common Code List MUST be expressed as an
xsd:enumeration, where the xsd:value for the enumeration is the actual
code value.

[R 8D1D]

In each Common Code List XML Schema File a single root element
MUST be globally declared within the given code list XML Schema file.

[R BE84]

In each Common Code List XML Schema File the code list root element
MUST be of a type representing the actual list of code values represented
by the type whose name ends in ‘ContentType’.

[R BFES5]

Every Common Code List MUST contain a structured set of annotation
documentation in the following sequence and pattern:

¢ UniquelD (mandatory): The identifier that references a Business
Data Type instance in a unique and unambiguous way.

¢ VersionID (mandatory): An indication of the evolution over time of
the Code List.

e Name (optional):

o CCTSArtifact (mandatory): The code of the type of component. In
this case the value will always be CLM.

e Description (mandatory):

e PrimitiveTypeCode (mandatory): The primitive data type of the
Code List.

¢ ModificationAllowedIndicator (mandatory):
e Defaultindicator (mandatory):

e UsageRule (optional, repetitive): Indicates the Usage Rule of the
Object.

¢ BusinessTermName (optional, repetitive): A synonym term under
which the Code List is commonly known and used in the business.

[R A814]

Each code list xsd:enumeration MUST contain a structured set of
annotations in the following sequence and pattern:

o CCTSArtifact (mandatory): The code of the type of component. In
this case the value will always be CLM

e Content (optional): The code of value for an enumeration.
¢ Name (optional): The name or text that the represents.
e Description (optional): Descriptive information concerning the code

o UsageRule (optional, repetitive): Indicates the Usage Rule of the

XML Naming and Design Rules V3.0 1st Public Review Page 135 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Object.

e BusinessTermName (optional, repetitive): A synonym term under
which the Code List Value is commonly known and used in the
business.

Restricted Code List XML Schema file MUST be used to

e Extend existing common code list or

[R 9FD1] ¢ Define a codelist where one does not exist or
e Restrict the value of a common codelist for the context category in
which it is defined.
Restrict Code List XML Schema files MUST NOT import or include any
[R 86C8] | other XML Schema files other than possibly a Common Code List XML
Schema file which it is restricting.
[R ACE9] All XML MUST be instantiated using UTF. UTF-8 should be used if
possible, if not UTF-16 should be used.
The xsi namespace prefix MUST be used to reference the
[R A1B9] | "http://www.w3.0rg/2001/XMLSchema-instance" namespace and
anything defined by the W3C XMLSchema-instance namespace.
[R9277] | The xsi:nil attribute MUST NOT appear in any conforming instance.
[R 8250] | The xsi:type attribute MUST NOT be used within an XML Instance.

XML Naming and Design Rules V3.0 1st Public Review Page 136 of 144

3672

3673
3674
3675
3676

3677
3678
3679
3680

3681
3682

3683
3684
3685
3686
3687

3688
3689
3690

3691
3692
3693
3694
3695
3696
3697

3698
3699
3700

3701
3702
3703
3704
3705

3706
3707
3708

3709
3710

3711
3712

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Appendix l. Glossary

Aggregate Business Information Entity (ABIE) — A collection of related pieces of
business information that together convey a distinct business meaning in a specific
business context. Expressed in modelling terms, it is the representation of an object
class, in a specific business context.

Aggregate Core Component (ACC) — A collection of related pieces of business
information that together convey a distinct business meaning, independent of any
specific business context. Expressed in modelling terms, it is the representation of
an object class, independent of any specific business context.

Aggregation — An Aggregation is a special form of Association that specifies a
whole-part relationship between the aggregate (whole) and a component part.

Artefact — A piece of information that is produced, modified, or used by a process.
An artefact can be a model, a model element, or a document. A document can
include other documents. CCTS artefacts include all registry classes as specified in
Section 9 of the CCTS Technical Specification and all subordinate named constructs
of a CCTS registry class.

Assembly Rules — Assembly Rules group sets of unrefined business information
entities into larger artefacts suitable for expressing complete business information
exchange concepts.

Association Business Information Entity (ASBIE) — A business information entity
that represents a complex business characteristic of a specific object class in a
specific business context. It has a unique business semantic definition. An
Association Business Information Entity represents an Association Business
Information Entity property and is therefore associated to an Aggregate Business
Information Entity, which describes its structure. An Association Business
Information Entity is derived from an Association Core Component.

Association Business Information Entity Property — A business information entity
property for which the permissible values are expressed as a complex structure,
represented by an Aggregate Business Information Entity.

Association Core Component (ASCC) — A core component which constitutes a
complex business characteristic of a specific Aggregate Core Component that
represents an object class. It has a unique business semantic definition. An
Association Core Component represents an Association Core Component Property
and is associated to an Aggregate Core Component, which describes its structure.

Association Core Component Property — A core component property for which the
permissible values are expressed as a complex structure, represented by an
Aggregate Core Component.

Attribute — A named value or relationship that exists for some or all instances of
some entity and is directly associated with that instance.

Backward Compatibility — Any XML instance that is valid against one schema
version will also validate against the previous schema version.

XML Naming and Design Rules V3.0 1st Public Review Page 137 of 144

3713
3714
3715
3716
3717
3718

3719
3720
3721

3722
3723
3724
3725
3726
3727

3728
3729

3730
3731
3732

3733
3734
3735
3736

3737
3738

3739
3740
3741

3742
3743

3744
3745
3746

3747
3748
3749
3750

3751
3752
3753

3754
3755

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Basic Business Information Entity (BBIE) — A business information entity that
represents a singular business characteristic of a specific object class in a specific
business context. It has a unique business semantic definition. A Basic Business
Information Entity represents a Basic Business Information Entity property and is
therefore linked to a data type, which describes it values. A Basic Business
Information Entity is derived from a Basic Core Component.

Basic Business Information Entity Property — A business information entity
property for which the permissible values are expressed by simple values,
represented by a data type.

Basic Core Component (BCC) — A core component which constitutes a singular
business characteristic of a specific Aggregate Core component that represents a
object class. It has a unique business semantic definition. a Basic Core Component
represents a Basic Core Component property and is therefore of a data type, which
defines its set of values. Basic core components function as the properties of
Aggregate Core components.

Basic Core Component (BCC) Property — A core component property for which
the permissible values are expressed by simple values, represented by a data type.

Business Context — The formal description of a specific business circumstance as
identified by the values of a set of context categories, allowing different business
circumstances to be uniquely distinguished.

Business Data Type — A business data type is a data type, which consists of one
and only one BDT content component, that carries the actual content plus one or
more BDT supplementary component giving an essential extra definition to the CDT
content component. BDTs do not have business semantics.

Business Data Type Content Component — Defines the primitive type used to
express the content of a core data type.

Business Data Type Content Component Restriction — The formal definition of a
format restriction that applies to the possible values of a core data type content
component.

Business Data Type Supplementary Component — Gives additional meaning to
the business data type content component.

Business Data Type Supplementary Component Restrictions — The formal
definition of a format restriction that applies to the possible values of a business data
type Supplementary Component.

Business Information Entity (BIE) — A piece of business data or a group of pieces
of business data with a unique business semantic definition. A business information
entity can be a Basic Business Information Entity (BBIE), an Association Business
Information Entity (ASBIE), or an Aggregate Business Information Entity (ABIE).

Business Information Entity (BIE) Property — A business characteristic belonging
to the Object Class in its specific business context that is represented by an
Aggregate Business Information Entity.

Business Libraries — A collection of approved process models specific to a line of
business (e.g., shipping, insurance).

XML Naming and Design Rules V3.0 1st Public Review Page 138 of 144

3756
3757

3758
3759
3760

3761
3762
3763

3764

3765
3766
3767

3768
3769
3770
3771

3772
3773
3774

3775

3776
3777

3778
3779
3780
3781

3782
3783

3784
3785

3786
3787
3788
3789

3790
3791
3792

3793
3794
3795

3796
3797
3798

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Business Process — The business process as described using the UN/CEFACT
Catalogue of Common business processes.

Business Process Context — The business process name(s) as described using
the UN/CEFACT Catalogue of Common Business Processes as extended by the
user.

Business Process Role Context — The actors conducting a particular business
process, as identified in the UN/CEFACT Catalogue of Common Business
Processes.

Business Semantic(s) — A precise meaning of words from a business perspective.

Business Term — This is a synonym of the dictionary entry name under which the
artefact is commonly known and used in business. A CCTS artefact may have
several business terms or synonyms.

Cardinality — An indication of the minimum and maximum occurences for a
characteristic: not applicable (0..0), optional (0..1), optional repetitive (0..*)
mandatory (1..1), mandatory repetitive (1..*), fixed (n..n) where n is a non-zero
positive integer.

Catalogue of Business Information Entities — This represents the approved set of
Business Information Entities from which to choose when applying the Core
Component discovery process

CCL - see Core Component Library.

Classification Scheme — This is an officially supported scheme to describe a given
context category.

Composition — A form of aggregation which requires that a part instance be

included in at most one composite at a time, and that the composite object is
responsible for the creation and destruction of the parts. Composition may be
recursive.

Context — Defines the circumstances in which a business process may be used.
This is specified by a set of context categories known as business context.

Context Category — A group of one or more related values used to express a
characteristic of a business circumstance.

Controlled Vocabulary — A supplemental vocabulary used to uniquely define
potentially ambiguous words or business terms. This ensures that every word within
any of the core component names and definitions is used consistently,
unambiguously and accurately.

Core Component (CC) — A building block for the creation of a semantically correct
and meaningful information exchange package. It contains only the information
pieces necessary to describe a specific concept.

Core Component Library — The Core Component Library is the part of the
registry/repository in which Core Components shall be stored as registry classes.
The Core Component Library will contain all the registry classes.

Core Component Property — A business characteristic belonging to the object class
represented by an Basic Core Component property or an Association Core
Component property.

XML Naming and Design Rules V3.0 1st Public Review Page 139 of 144

3799
3800

3801

3802
3803
3804

3805
3806

3807
3808
3809

3810
3811

3812
3813
3814

3815
3816

3817
3818

3819
3820
3821
3822

3823
3824

3825
3826

3827
3828
3829

3830
3831
3832

3833
3834
3835
3836

3837
3838

3839
3840

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

Definition — This is the unique semantic meaning of a core component, business
information entity, business context or data type.

Dictionary Entry Name — This is the official name of a CCTS-conformant artefact.

Facet — A facet is a constraining value that represents a component restriction of a
Business Data Type content or supplementary component so as to define its allowed
value space.

Geopolitical Context — Geographic factors that influence business semantics (e.g.,
the structure of an address).

Industry Classification Context — Semantic influences related to the industry or
industries of the trading partners (e.g., product identification schemes used in
different industries).

Information Entity — A reusable semantic building block for the exchange of
business-related information.

LowerCamelCase (LCC) — LowerCamelCase is a lexical representation of
compound words or phrases in which the words are joined without spaces and all but
the first word are capitalized within the resulting compound.

Message Assembly — The process whereby Business Information Entities are
assembled into a usable message for exchanging business information.

Naming Convention — The set of rules that together comprise how the dictionary
entry name for CCTS artefacts are constructed.

Object Class — The logical data grouping (in a logical data model) to which a data
element belongs (ISO11179). The object class is the part of a core component or
business information entity dictionary entry name that represents an activity or
object.

Object Class Term — A component of the name of a core component or business
information entity which represents the object class to which it belongs.

Official Constraints Context — Legal and governmental influences on semantics
(e.g. hazardous materials information required by law when shipping goods).

Primitive Type — A primitive type, also known as a base type or built-in type, is the
basic building block for the representation of a value as expressed by more complex
data types.

Product Classification Context — Factors influencing semantics that are the result
of the goods or services being exchanged, handled, or paid for, etc. (e.g. the buying
of consulting services as opposed to materials).

Property Term — A semantically meaningful name for the characteristic of the Object
Class that is represented by the core component property. It shall serve as basis for
the DEN of the basic and Association Core Components that represents this core
component property.

Qualified Business Data Type — A qualified business data type contains restrictions
on a business data type content or business data type supplementary component(s).

Qualifier Term — A word or group of words that help define and differentiate an item
(e.g. a business information entity or a business data type) from its associated items

XML Naming and Design Rules V3.0 1st Public Review Page 140 of 144

3841
3842

3843
3844

3845
3846
3847

3848

3849
3850

3851
3852

3853
3854

3855
3856

3857
3858

3859
3860

3861
3862
3863

3864
3865

3866
3867
3868

3869
3870
3871
3872

3873
3874

3875
3876
3877

3878
3879

3880
3881
3882

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

(e.g. from a core component, a core data type, another business information entity or
another business data type).

Registry — An information system that manages and references artifacts that are
stored in a repository. The term registry implies a combination of registry/repository.

Registry Class — The formal definition of all the common information necessary to
be recorded in the registry by a registry artefact — core component, a business
information entity, a data type or a business context.

Repository — an information system that stores artifacts.

Representation Term — The type of valid values for a Basic Core Component or
Basic Business Information Entity.

Restriction — restriction is the process of deriving a new data structure from an
existing data structure under the following rules:

e you can reduce the cardinality range of any field from the existing data
structure;

e you can restrict the range of allowed values for any field with a simple
data type (e.g. string, number);

e you can add a semantic restriction which narrows the business scope
of any field.

All valid instances of a new restricted data structure must also be valid instances of
the existing data structure from which the new data structure was derived.

Supporting Role Context — Semantic influences related to non-partner roles (e.g.,
data required by a third-party shipper in an order response going from seller to
buyer.).

Syntax Binding — The process of expressing a Business Information Entity in a
specific syntax.

System Capabilities Context — This context category exists to capture the
limitations of systems (e.g. an existing back office can only support an address in a
certain form).

UMM Information Entity — A UMM information entity realizes structured business
information that is exchanged by partner roles performing activities in a business
transaction. Information entities include or reference other information entities
through associations.”

Unique Identifier — The identifier that references a registry class instance in a
universally unique and unambiguous way.

UpperCamelCase (UCC) — UpperCamelCase is a lexical representation of
compound words or phrases in which the words are joined without spaces and are
capitalized within the resulting compound.

Usage Rules — Usage rules describe a constraint that describes specific conditions
that are applicable to a component in the model.

User Community — A user community is a group of practitioners, with a publicized
contact address, who may define Context profiles relevant to their area of business.
Users within the community do not create, define or manage their individual context

XML Naming and Design Rules V3.0 1st Public Review Page 141 of 144

3883
3884
3885

3886
3887

3888
3889
3890
3891

3892
3893
3894
3895
3896
3897

3898
3899
3900

3901
3902

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

needs but conform to the community’s standard. Such a community should liaise
closely with other communities and with general standards-making bodies to avoid
overlapping work. A community may be as small as two consenting organizations.

Version — An indication of the evolution over time of an instance of a core
component, data type, business context, or business information entity.

XML Schema - A generic term used to identify the family of grammar based XML
document structure validation languages to include the more formal W3C XML
Schema Definition Language, ISO 8601 Document Type Definition, or Schematron.
An XML Schema is a collection of schema components.

XML Schema Definition Language Component —The 13 building blocks that
comprise the abstract data model of the schema, consisting of simple type
definitions, complex type definitions, attribute declarations, element declarations,
attribute group definitions, identity-constraint definitions, model group definitions,
notation declarations, annotations, model groups, particles, wildcards, and attribute
uses.

XML Schema Definition Language — The World Wide Web Consortiums official
recommendation for describing the structure and constraining the contents of XML
documents.

XML Schema Document — An XML conformant document expression of an XML
schema.

XML Naming and Design Rules V3.0 1st Public Review Page 142 of 144

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07

3903 Disclaimer

3904 The views and specification expressed in this document are those of the authors and
3905 are not necessarily those of their employers. The authors and their employers

3906 specifically disclaim responsibility for any problems arising from correct or incorrect
3907 implementation or use of this design.

XML Naming and Design Rules V3.0 1st Public Review Page 143 of 144

3908
3909
3910
3911

3912
3913
3914
3915
3916
3917
3918
3919

3920
3921

3922
3923
3924
3925
3926
3927

XML Naming and Design Rules V3.0 1st Public Review 2008-08-07
Copyright Statement
Copyright © UN/CEFACT 2008. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to UN/CEFACT except as required to translate it into languages
other than English.

The limited permissions granted above are perpetual and will not be revoked by
UN/CEFACT or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis
and UN/CEFACT DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

XML Naming and Design Rules V3.0 1st Public Review Page 144 of 144

